Шпаргалки по "Материаловедению"

Автор работы: Пользователь скрыл имя, 18 Июня 2014 в 19:16, шпаргалка

Краткое описание

1. Типы связей в твердых телах (ионная, ковалентная, металлическая связь)
2. Атомно-кристаллическое строение металла
3. Кристаллографическое обозначение атомных плоскостей и направлений
4. Анизотропия металлов
5. Строение реальных кристаллов
6. Кристаллизация металлов
7. Строение слитка
8. Полиморфные превращения в металлах
9. Пластическая деформация и механические свойства в металлов
10. Наклеп, возврат, рекристаллизация
11. Химическое соединение, твердые растворы, механические смеси
12. Построение диаграмм состояния двойных систем. Правило фаз
13. Диаграмма состояния для сплавов, образующих механические смеси из чистых компонентов
14. Правило отрезков
15. Диаграмма состояния для сплавов с неограниченной растворимостью в твердом состоянии
16. Диаграмма состояния для сплавов с неограниченной растворимостью в твердом состоянии (диаграмма с эвтектикой, диаграмма с перитектикой)
17. Диаграмма состояния для сплавов, образующих устойчивое химическое соединение
18. Диаграмма состояния с неустойчивым химическим соединением
19. Диаграмма состояния железо-цементит
20. Углеродистые стали
21. Влияние постоянных примесей на свойство сталей
22. Нагартованная сталь
23. Чугуны (белый, серый, высопкопрочный, ковкий). Получение, структура, маркировка, область применения
24. Основные виды термической обработки стали
25. Превращение в стали при нагревании
26. Рост зерен аустенита при нагреве
27. Превращение переохлажденного аустенита(распад аустенита)
28. Мартенситное превращение
29. Превращение мартенсита и Аост при нагреве(отпуск стали)
30. Обратимая и необратимая отпускная хрупкость
31. Технология термическая обработка стали. Отжиг первого рода
32. Отжиг второго рода
33. Закалка стали (выбор температуры закалки, время нагрева, защита стали от окисления и обезугрероживания)
34. Скорость охлаждения при закалке. Закаливаемость и прокаливаемость стали. Способы закалки
35. Закалка с обработкой холодом
36. Отпуск стали
37. Поверхностная закалка стали
38. Физические основы химико-термической обработки
39. Цементация (все о цементации)
40. Азотирование (все о азотировании)
41. Цианирование
42. Диффузионная металлизация
43. Конструкционные стали
44. Маркировка легированных сталей
45. Цементация стали
46. Улучшаемые стали
47. Пружинные стали
48. Шарикоподшипниковые стали
49. Инструментальные стали повышенной прокаливаемости
50. Инструментальные стали пониженной прокаливаемости
51. Быстрорежущие стали
52. Штамповые стали
53. Твердые сплавы
54. Алюминий и сплавы на основе алюминия
55. Медь и сплавы на основе меди
56. Сплавы на основе легкоплавких металлов
57. Основы порошковой металлургии

Вложенные файлы: 1 файл

0533906_45998_shpory_materialovedenie.doc

— 2.18 Мб (Скачать файл)

Твердость стали после отпуска составляет 64…65 HRC. Структура стали после термообр. это М отпуска и карбид.

При термической обработке быстрорежущих сталей применяют обработку холодом. После закалки сталь охлаждают до T — 80 - 100oС, после этого проводят однократный отпуск при T 560oС для снятия напряжений. Иногда для повышения износостойкости быстрорежущих сталей применяют низкоT цианирование. Основными видами режущих инструментов из быстрорежущей стали являются резцы, сверла, долбяки, протяжки, метчики машинные, ножи для резки бумаги.

  1. Металлокерамические твердые сплавы.

Керамикометаллические материалы (керметы) содержат более 50 % керамической фазы. В качестве керамической фазы используют тугоплавкие бориды, карбиды, оксиды и нитриды, в качестве металлической фазы – кобальт, никель, тугоплавкие металлы, стали.

ВК(WC, Co) В-вольфрам, Co-корбид

ТК(WC, ТiС, Co)

ТТК WC, ТiС, ТаС, Co) Та-тантал

Керметы отличаются высокими жаростойкостью, износостойкостью, твердостью, прочностью. Они используются для изготовления деталей конструкций, работающих в агрессивных средах при высоких температурах (например, лопаток турбин, чехлов термопар). Частным случаем керметов являются твердые сплавы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Штамповые стали для хол. деформирования металлов.

Стали должны обладать высокой твердостью, износостойкостью, прочностью, вязкостью (чтобы воспринимать ударные нагрузки), сопротивлением пластическим деформациям.

Для штампов небольших размеров (до 25 мм) используют углеродистые инструментальные стали У10, У11, У12 после закалки и низкого отпуска на твердость 57…59 HRC. Это позволяет получить хорошую износостойкость и ударную вязкость.

Для более крупных изделий применяют легированные стали Х, Х9, Х6ВФ. Для повышения износостойкости инструмента после термической обработки проводят цианирование или хромирование рабочих поверхностей.

Для уменьшения брака при закалке необходимо медленное охлаждение в области температур мартенситного превращения (например, закалка из воды в масло для углеродистых сталей, ступенчатая закалка для легированных сталей).

Если штамповый инструмент испытывает ударные нагрузки, то используют стали, обладающие большей вязкостью (стали 4ХС4, 5ХНМ). Это достигается снижением содержания углерода, введением легирующих элементов и соответствующей термической обработкой. После закалки проводят высокий отпуск при температуре 480…580oС, что обеспечивает твердость 38…45 HRC.

 

 

 

 

 

 

 

 

 

 

 

  1. Штамповые стали для горячего деформ.металлов.

Дополнительно к общим требованиям, от сталей этой группы требуется устойчивость против образования трещин при многократном нагреве и охлаждении, окалиностойкость, высокая теплопроводность для отвода теплоты от рабочих поверхностей штампа, высокая прокаливаемость для обеспечения высокой прочности по всему сечению инструмента.

Для изготовления молотовых штампов применяют хромоникелевые среднеуглеродистые стали 5ХНМ, 5ХНВ, 4ХСМФ. Вольфрам и молибден добавляют для снижения склонности к отпускной хрупкости. После термической обработки, включающей закалку с температуры 760…820oС и отпуск при 460…540oС, сталь имеет структуру – сорбит или троостит и сорбит отпуска. Твердость 40…45 HRC.

Штампы горячего прессования работают в более тяжелых условиях. Для их изготовления применяются стали повышенной теплостойкости. Сталь 3Х2В8Ф сохраняет теплостойкость до 650oС, но наличие карбидов вольфрама снижает вязкость. Сталь 4Х5В2ФС имеет высокую вязкость. Повышенное содержание хрома и кремния значительно увеличивает окалиностойкость стали.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Алюминий. Примеси (железо, кремний) в алюминии и их влияние на свойства алюминия. Классификация алюминиевых сплавов (литейные, деформируемые).

Алюминий – легкий металл с плотностью 2,7 г/см3 и температурой плавления 660oС. Имеет гранецентрированную кубическую решетку. Обладает высокой тепло- и электропроводностью. Хим. активен, но образующаяся плотная пленка оксида алюминия Al2O3, предохраняет его от коррозии.

Механические свойства: предел прочности 150 МПа, относительное удлинение 50 %, модуль упругости 7000 МПа.

Алюминий высокой чистоты маркируется А99 (99,999 % Al), А8, А7, А6, А5, А0 (содержание алюминия от 99,85 % до 99 %).

Технический алюминий хорошо сваривается, имеет высокую пластичность. Из него изготавливают строительные конструкции, малонагруженные детали машин, используют в качестве электротехнического материала для кабелей, проводов.

Принцип маркировки алюминиевых сплавов. В начале указывается тип сплава: Д – сплавы типа дюралюминов; А – технический алюминий; АК – ковкие алюминиевые сплавы; В – высокопрочные сплавы; АЛ – литейные сплавы.

Далее указывается условный номер сплава. За условным номером следует обозначение, характеризующее состояние сплава: М – мягкий (отожженный); Т – термически обработанный (закалка плюс старение); Н – нагартованный; П – полунагартованный

По технолог. свойствам сплавы подразделяются на три группы:

  • деформируемые сплавы, не упрочняемые терм.обработкой:
  • деформируемые сплавы, упрочняемые терм.обработкой;
  • литейные сплавы.

Методами порошковой металлургии изготовляют спеченные алюминиевые сплавы (САС) испеченные алюминиевые порошковые сплавы (САП).

 

  1. Термическая обработка сплавов алюминий-медь. Деформируемые алюминиевые сплавы, упрочняемые термической обработкой (дюралюмины).

К таким сплавам относятся дюралюмины ( сложные сплавы систем алюминий – медь –магний или алюминий – медь – магний – цинк). Они имеют пониженную коррозионную стойкость, для повышения которой вводится марганец.

Дюралюмины обычно подвергаются закалке с температуры 500oС и естественному старению, которому предшествует двух-, трехчасовой инкубационный период. Максимальная прочность достигается через 4…5 суток.

Широкое применение дюралюмины находят в авиастроении, автомобилестроении, строительстве.

Высокопрочными стареющими сплавами являются сплавы, которые кроме меди и магния содержат цинк. Сплавы В95, В96 имеют предел прочности около 650 МПа. Основной потребитель – авиастроение (обшивка, стрингеры, лонжероны).

Ковочные алюминиевые сплавы АК:, АК8 применяются для изготовления поковок. Поковки изготавливаются при температуре 380…450oС, подвергаются закалке от температуры 500…560oС и старению при 150…165oС в течение 6…15 часов.

В состав алюминиевых сплавов дополнительно вводят никель, железо, титан, которые повышают температуру рекристаллизации и жаропрочность до 300oС.

Изготавливают поршни, лопатки и диски осевых компрессоров, турбореактивных двигателей.

 

 

 

 

 

 

 

 

 

  1. Деформируемые алюминиевые сплавы, не  упрочняемые термической обработкой.

Принцип маркировки алюминиевых сплавов. В начале указывается тип сплава: Д – сплавы типа дюралюминов; А – технический алюминий; АК – ковкие алюминиевые сплавы; В – высокопрочные сплавы; АЛ – литейные сплавы.

По технологическим свойствам сплавы подразделяются на три группы:

  • деф. сплавы, не упрочняемые термической обработкой:
  • деф. сплавы, упрочняемые термической обработкой;
  • литейные сплавы.

Прочность алюминия можно повысить легированием. В сплавы, не упрочняемые термической обработкой, вводят марганец или магний. Атомы этих элементов существенно повышают его прочность, снижая пластичность. Обозначаются сплавы: с марганцем – АМц, с магнием – АМг; после обозначения элемента указывается его содержание (АМг3).

Магний действует только как упрочнитель, марганец упрочняет и повышает коррозионную стойкость.

Прочность сплавов повышается только в результате деформации в холодном состоянии. Чем больше степень деформации, тем значительнее растет прочность и снижается пластичность. В зависимости от степени упрочнения различают сплавы нагартованные и полунагартованные (АМг3П).

Эти сплавы применяют для изготовления различных сварных емкостей для горючего, азотной и других кислот, мало- и средненагруженных конструкций.

 

 

 

 

 

 

 

 

  1. Алюминиевые сплавы для фасонного литья.

Принцип маркировки алюминиевых сплавов. В начале указывается тип сплава: Д – сплавы типа дюралюминов; А – технический алюминий; АК – ковкие алюминиевые сплавы; В – высокопрочные сплавы; АЛ – литейные сплавы.

По технологическим свойствам сплавы подразделяются на три группы:

  • деф. сплавы, не упрочняемые термической обработкой:
  • деф. сплавы, упрочняемые термической обработкой;
  • литейные сплавы.

К литейным сплавам относятся сплавы системы алюминий – кремний (силумины), содержащие 10…13 % кремния.

Присадка к силуминам магния, меди содействует эффекту упрочнения литейных сплавов при старении. Титан и цирконий измельчают зерно. Марганец повышает антикоррозионные свойства. Никель и железо повышают жаропрочность.

Литейные сплавы маркируются от АЛ2 до АЛ20. Силумины широко применяют для изготовления литых деталей приборов и других средне- и малонагруженных деталей, в том числе тонкостенных отливок сложной формы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Медь. Влияние примесей (висмут, свинец) на свойства меди. Сплавы меди с цинком (латуни), их маркировка.

Медь имеет гранецентрированную кубическую решетку. Плотность меди 8,94 г/см3, температура плавления 1083oС.

Характерным свойством меди является ее высокая электропроводность, поэтому она находит широкое применение в электротехнике. Технически чистая медь маркируется: М00 (99,99 % Cu), М0 (99,95 % Cu), М2, М3 и М4 (99 % Cu).

Механические свойства меди относительно низкие: предел прочности составляет 150…200 МПа, относительное удлинение – 15…25 %. Поэтому в качестве конструкционного материала медь применяется редко. Повышение механических свойств достигается созданием различных сплавов на основе меди.

Различают две группы медных сплавов: латуни – сплавы меди с цинком, бронзы – сплавы меди с другими (кроме цинка) элементами.

Латуни могут иметь в своем составе до 45 % цинка. Повышение содержания цинка до 45 % приводит к увеличению предела прочности до 450 МПа. Максимальная пластичность имеет место при содержании цинка около 37 %. 

Из диаграммы состояния медь – цинк видно, что в зависимости от состава имеются однофазные латуни, состоящие из – твердого раствора, и двухфазные ( ) – латуни. По способу изготовления изделий различают латуни деформир. и литейные.

Деформируемые латуни маркируются буквой Л, за которой следует число, показывающее содержание меди в процентах, например в латуни Л62 содержится 62 % меди и 38 % цинка. Если кроме меди и цинка, имеются другие элементы, то ставятся их начальные буквы ( О – олово, С – свинец, Ж – железо, Ф – фосфор, Мц – марганец, А – алюминий, Ц – цинк). Количество этих элементов обозначается соответствующими цифрами после числа, показывающего содержание меди, например, сплав ЛАЖ60-1-1 содержит 60 % меди, 1 % алюминия, 1 % железа и 38 % цинка.

Однофазные – латуни используются для изготовления деталей деформированием в холодном состоянии. Изгот. ленты, гильзы патронов, радиаторные трубки, проволоку.

Для изготовления деталей деформированием при температуре выше 500oС используют ( ) – латуни. Из двухфазных латуней изготавливают листы, прутки и другие заготовки, из которых последующей механической обработкой изготавливают детали. Обрабатываемость резанием улучшается присадкой в состав латуни свинца, например, латунь марки ЛС59-1, которую называют “автоматной латунью”.

Латуни имеют хорошую коррозионную стойкость,мож повысить дополнительно присадкой олова. Латунь ЛО70-1 стойка против коррозии в морской воде и называется “морской латунью“.

Добавка никеля и железа повышает мех. прочность до 550 МПа.

Литейные латуни также маркируются буквой Л, После буквенного обозначения основного легирующего элемента (цинк) и каждого последующего ставится цифра, указывающая его усредненное содержание в сплаве. Например, латунь ЛЦ23А6Ж3Мц2 содержит 23 % цинка, 6 % алюминия, 3 % железа, 2 % марганца. Наилучшей жидкотекучестью обладает латунь марки ЛЦ16К4. К литейным латуням относятся латуни типа ЛС, ЛК, ЛА, ЛАЖ, ЛАЖМц. Литейные латуни не склонны к ликвации, имеют сосредоточенную усадку, отливки получаются с высокой плотностью.

Латуни являются хорошим материалом для конструкций, работающих при отрицательных температурах. 

 

 

 

 

 

 

 

 

 

  1. Сплавы меди с оловом и другими элементами (бронза). Маркировка бронз. Бериллиевая бронза.

Сплавы меди с другими элементами кроме цинка – бронза. Бронзы подразд. на деформируемые и литейные. При маркировке деформируемых бронз на первом месте ставятся буквы Бр, затем буквы, указывающие, какие элементы, кроме меди, входят в состав сплава. После букв идут цифры, показавающие содержание компонентов в сплаве. Например, марка БрОФ10-1 означает, что в бронзу входит 10 % олова, 1 % фосфора, остальное – медь. Маркировка литейных бронз также начинается с букв Бр, затем указываются буквенные обозначения легирующих элементов и ставится цифра, указывающая его усредненное содержание в сплаве. БрО3Ц12С5 содержит 3 % олова, 12 % цинка, 5 % свинца, остальное – медь.

Информация о работе Шпаргалки по "Материаловедению"