Физиология растений

Автор работы: Пользователь скрыл имя, 17 Января 2014 в 23:38, реферат

Краткое описание

Физиология растений относится к биологическим наукам. Биология — наука о жизни — издавна разделялась на два основных направления: анатомо-морфологическое и физиологическое. Как всякая классификация, такое разделение условно. Действительно, как изучать отдельные органы, не принимая во внимание их функции, или изучать процессы, не касаясь тех структур, где они локализованы? В последнее время биологи стремятся теснее связать процессы с определенными внутренними структурами. Так, например, для понимания процесса дыхания важное значение имеет изучение микроскопической и субмикроскопической структуры митохондрий, где этот процесс локализован. Биологические функции многих макромолекул связаны с их формой. Хорошо известно решающее значение двухцепо-чечпой структуры ДНК.

Вложенные файлы: 1 файл

физрастение.doc

— 1.56 Мб (Скачать файл)

Так, для растений бобов интервал завядания составляет несколько  суток, тогда как для проса  — несколько недель. Все это  сказывается на устойчивости растений к засухе. Основное значение при определении показателя влажности завядания имеет тип почвы. Одно и то же растение на черноземе завядает при значительно более высокой влажности, чем на подзоле. Это связано с тем, что черноземные почвы более тонкого механического состава с большей силой удерживают почвенную влагу. Влажность завядания еще не дает представления о количестве воды, полностью недоступной растению, поскольку при завядании какое-то количество воды продолжает поступать в растительный организм. В связи с этим было введено понятие мертвый запас влаги в почве — это количество воды, полностью недоступное растению. Мертвый запас зависит исключительно от типа почвы, ее механического состава, что видно из следующей формулы: q=% песка (0,01) + %пыли (0,12) + % глины (0,57), где q — мертвый запас. Чем больше глинистых частиц в почве, тем больше мертвый запас влаги. Почвы более тонкого механического состава характеризуются и большей влагоемкостью. Количество доступной для растительного организма воды представляет разность между полной влагоемкостью-(максимальное количество воды, удерживаемое почвой без стекания) и мертвым запасом. В связи со сказанным перегнойные суглинистые почвы обладают не только наибольшим мертвым запасом, но и наибольшим запасом доступной влаги.

ФИЗИОЛОГИЧЕСКИЕ  ОСНОВЫ  УСТОЙЧИВОСТИ РАСТЕНИИ К ЗАСУХЕ

Вопрос об устойчивости растений к  засухе имеет очень большое не только теоретическое, но и практическое значение.

На территории СССР имеются зоны избыточного увлажнения с годовым количеством осадков более 500 мм. Области неустойчивого увлажнения с годовым количеством осадков 250—500 мм и области с недостаточным увлажнением (засушливые), где количество осадков менее 250 мм в год. Необходимо также учитывать, что для растений важно не только и даже не столько общее годовое количество осадков, сколько их распределение по месяцам. Для большинства сельскохозяйственных растений особенно важны дожди в первую половину лета (май, июнь), между тем именно этот период часто бывает резко засушливым.

В понятие засухи входит целый комплекс метеорологических условий. Засуха — это длительный период бездождья, сопровождаемый непрерывным падением относительной влажности воздуха и повышением температуры. Различают засуху атмосферную и почвенную. Атмосферная засуха характеризуется низкой относительной влажностью воздуха. Почвенная — отсутствием доступной для растений воды в почве. Чаще всего эти виды засухи сопровождают друг друга. К очень тяжелым последствиям приводят также такие явления, как мгла и суховей. Мгла — это атмосферная засуха, сопровождаемая появлением в воздухе во взвешенном состоянии твердых частиц. Суховей — это атмосферная засуха, сопровождаемая сильным ветром, при котором перемещаются большие массы горячего воздуха.

1. ВЛИЯНИЕ НА РАСТЕНИЯ НЕДОСТАТКА ВОДЫ

В естественных условиях очень часто  даже в обычные ясные дни поступление  воды в растение не успевает за ее расходованием. Образуется водный дефицит, который легко обнаружить, определяя содержание воды в листьях в разные часы суток. Определения показали, что в полуденные часы содержание воды в листьях примерно на 25—28% меньше по сравнению с утренними. Увеличение водного дефицита сопровождается возрастанием сосущей силы листьев. Именно поэтому в дневные часы сосущая сила листьев, как правило, наибольшая.

Полуденный водный дефицит представляет собой нормальное явление и особенной опасности для растительного организма не представляет. Значительному увеличению водного дефицита при достаточном количестве воды в почве препятствует сокращение транспи-рации в ночные часы., В нормальных условиях водоснабжения перед восходом солнца листья растений насыщены водой. Однако при определенном сочетании внешних условий водный дефицит настолько возрастает, что не успевает восстанавливаться за ночь. В утренние часы листья растений уже недонасыщены водой, появляется остаточный водный дефицит. В последующие дни, если снабжение водой не улучшится, недостаток воды будет все больше и больше нарастать. В некоторых случаях может наблюдаться завядание растений и утрачивается тургор. Первые фазы завядания сходны с первыми фазами плазмолиза, так как в силу уменьшения содержания воды объем клетки сокращается. Однако в дальнейшем течение процессов завядания и плазмолиза различно. При плазмолизе наружный раствор проникает через клеточную оболочку и вызывает отставание протоплазмы; при завядаиии в силу потери воды сокращающаяся протоплазма тянет за собой оболочку. На оболочке образуются как бы складки, она теряет первоначальную форму, что и вызывает потерю прямостоячего положения тканей и организма в целом. Завядание не означает, что растение погибло. Если своевременно снабдить растение водой, то тургор восстанавливается, жизнедеятельность организма продолжается, правда с большими или меньшими повреждениями. Различают два типа завядания.

Временное завядание. Причиной временного завядания чаще всего бывает атмосферная засуха, когда доступная вода в почве есть, однако низкая влажность воздуха, высокая температура настолько увеличивают транспирацию, что поступление воды не поспевает за ее расходованием. При временном завядании в основном теряют тургор листья. Чаще всего это наблюдается в полуденные часы. В ночные часы растения оправляются и к утру вновь находятся в тургесцентном состоянии. Временное завядание, конечно, не проходит без последствий. При потере тургора устьица закрываются, фотосинтез резко замедляется, растение не накапливает сухого вещества, а только тратит его. Однако все же временное завядание сравнительно легко переносится растением.

Глубокое завядание наступает тогда, когда в почве почти не остается доступной для растения воды. В этих условиях даже небольшая транспирация вызывает все возрастающий водный дефицит и глубокое завядание, при котором происходит общее иссушение всего растительного организма. Растущие молодые листья оттягивают воду от стебля и корневой системы. Последствия такого завядания могут быть необратимыми и губительными.

Вместе с тем непродолжительное  завядание может рассматриваться как один из способов защиты растения от гибельного обезвоживания. Так, при завядании благодаря устьичным и внеустьичным регулирующим механизмам транспирация резко сокращается, это позволяет растительному организму в течение определенного промежутка времени сохранить воду, необходимую для поддержания жизнеспособности, и не погибнуть от полного высыхания.

Завядание может происходить при  разной потере воды. Есть растения тенистых местообитаний с малоэластичными клеточными оболочками, у которых потеря воды, равная 3—5%, уже вызывает завядание. Однако есть и такие растения, у которых завядание наступает только при водном дефиците, равном 20 и даже 30%.

Водный дефицит и завядание  вызывают сдвиги в физиологической  деятельности растения. Эти изменения  могут быть более или менее  сильными, обратимыми и необратимыми, в зависимости от длительности обезвоживания и от вида растительного организма.

За начало страдания растений от недостатка воды обычно принимается появление остаточного утреннего водного дефицита. Одновременно в этот же период прекращается плач растений. Последствия водного дефицита многообразны. Прежде всего в клетках понижается содержание свободной воды, одновременно возрастает концентрация клеточного сока. Происходят глубокие изменения в цитоплазме, сильно возрастает проницаемость мембран. Клетки перестают удерживать ионы и легко отдают их во внешнюю среду. Листья, подвергшиеся завяданию при помещении в воду, выделяют значительное количество солей и других растворимых соединений. Усиленный выход солей (экзоосмос) наблюдается также из клеток корня, подвергнутых завяданию. Одновременно эти клетки теряют способность к поглощению питательных веществ. Обезвоживание изменяет и другие свойства протоплазмы, в частности возрастает ее вязкость. В результате нарушения гидратиых оболочек меняется конфигурация белков-ферментов и, как следствие, их активность. Особенно резко падает активность ферментов, катализирующих процессы синтеза. Вместе с тем активность ферментов, катализирующих процессы распада, возрастает. Завядание приводит к увеличению активности ферментов, катализирующих распад белков (нротеолиз). Это может быть связано с тем, что при обезвоживании устьица закрываются, что, в свою очередь, приводит к недостатку кислорода. В результате все процессы сдвигаются в анаэробную сторону, в частности накапливаются сульфгидрильные группировки (SH), которые являются активаторами протеолитических ферментов. Активация работы протео-литических ферментов приводит к тому, что при завядании содержание белкового азота резко падает, тогда как небелкового возрастает. Распад белков при обезвоживании может быть настолько глубоким, что наступает гибель растения.

Согласно подробным исследованиям  процессов обмена листьев табака, проведенным А. И. Смирновым, завядание  в первую очередь сказывается на более старых листьях. При этом в них усиливаются процессы распада сложных углеводов на более простые (крахмала на сахара), а также распад белков на аминокислоты и далее до аммиака.

За последнее время много  внимания уделяется изучению влияния  недостатка воды на нуклеиновый обмен. Показано, что при возрастании водного дефицита приостанавливается синтез ДНК, одновременно усиливаются процессы распада этого* важнейшего соединения. Усиливается также распад РНК. Возможно, что изменение в нуклеиновом обмене является одной из причин остановки синтеза белков.

При рассмотрении вопроса о влиянии  происходящих при завядании процессов распада на жизнедеятельность организма надо, по-видимому, учитывать два обстоятельства. С одной стороны, этот процесс приводит к увеличению концентрации клеточного сока, повышению осмотического давления и сосущей силы и в этой связи представляет собой защитную реакцию организма. С другой стороны, усиление процессов распада приводит к тяжелым физиологическим нарушениям и даже к гибели организма.

Недостаток воды изменяет и такие  основные физиологические процессы, как фотосинтез и дыхание. Прежде всего при обезвоживании устьица закрываются, это резко снижает поступление углекислоты в лист и, как следствие, интенсивность фотосинтеза падает. Однако уменьшение содержания воды снижает интенсивность фотосинтеза и у растений, не имеющих устьиц (мхи, лишайники). По-видимому, обезвоживание, изменяя конформацию ферментов, участвующих в процессе фотосинтеза, уменьшает их активность. Что касается интенсивности дыхания, то в первый период завядания она даже возрастает. Это связано с тем, что в результате усиления под влиянием завядания процесса распада крахмала возрастает количество Сахаров — этого основного субстрата дыхания. Вместе с тем при недостатке воды в клетках энергия, выделяющаяся в процессе дыхания, не аккумулируется в АТФ, а в основном выделяется в виде тепла. Таким образом, при завядании энергия дыхания не может быть использована растением. В силу этого усиление дыхания, сопровождаемое распадом органических веществ, может принести вред растительному организму.

Из всех физиологических процессов  наиболее чувствительным к недостатку влаги является процесс роста. Наблюдения показывают, что в самый начальный  период, когда растение испытывает недостаток влаги, фотосинтез еще идет, дыхание осуществляется нормальным путем, а рост уже приостанавливается. Это объясняется иесколькими причинами. Уменьшение содержания воды прекращает редупликацию ДНК, а следовательно, деление клеток. Вторая фаза роста клеток (фаза растяжения) идет за счет усиленного поступления воды. В условиях недостатка воды эта фаза резко тормозится. Клетки, образовавшиеся в условиях засухи, всегда отличаются малым размером.

Таковы общие закономерности страдания  растительного организма под влиянием водного стресса. Надо заметить, что отдельные органы растения страдают не в одинаковой степени и в определенной последовательности. При начинающемся водном дефиците в растении наблюдается перераспределение воды. Молодые листья оттягивают воду от более старых, а также от корневой системы. Отмирают корневые волоски. Усиливаются процессы опробковения корней. Указанные изменения приводят к значительному сокращению зоны, участвующей в поглощении воды, к снижению проницаемости клеток корня для воды. Именно'это определяет тот факт, что после длительного завядания растения оправляются медленно. Более того, способность корневых систем к поглощению воды после завядания полностью не восстанавливается. После достижения растением полного тургора процессы обмена восстанавливаются не сразу, так как водный стресс вызывает нарушения в системах регуляции.

Затянувшееся завядание может  привести растение к гибели. В крайних  случаях при внезапном и очень  большом напряжении всех метеорологических факторов растение гибнет буквально от высыхания (захват) или высоких температур (запал). Однако обычно гибель растения от водного дефицита наступает еще до их полного высыхания, и причиной ее являются нарушения обмена веществ. Особенно опасно в этом отношении нарушение нуклеинового и белкового обмена. Прекращение синтеза и усиление распада белка, снижение его содержания ниже критического уровня приводит к необратимым изменениям. Организм не может восстановить способность к новообразованию белка, а без этого невозможна жизнь. Глубокий распад сложных органических соединений ведет к образованию промежуточных продуктов распада (например, аммиака), которые, накапливаясь, отравляют организм. Не исключено также, что обезвоживание приводит к повреждению из-за резкого повышения концентрации клеточного сока и сдвига рН в кислую сторону. . Необходимо отметить, что растения на протяжении онтогенеза ^относятся к недостатку воды неодинаково. У каждого вида растений /существуют «критические» периоды, т. е. периоды наибольшей чувствительности к снабжению водой. Исследования показали, что именно периоды наибольшего роста данного органа или всего растительного организма в целом наиболее чувствительны к недостатку воды. С агрономической точки зрения критические периоды — это периоды, когда наиболее интенсивно растут и формируются те органы, ради которых данное растение возделывают. Особенно чувствительными к недостатку воды являются периоды формирования пыльцы и оплодотворения (Ф. Д. Сказкин, В. В. Аникиев).

 

2. ФИЗИОЛОГИЧЕСКИЕ  ОСОБЕННОСТИ  ЗАСУХОУСТОЙЧИВЫХ РАСТЕНИЙ

Информация о работе Физиология растений