Физиология растений

Автор работы: Пользователь скрыл имя, 17 Января 2014 в 23:38, реферат

Краткое описание

Физиология растений относится к биологическим наукам. Биология — наука о жизни — издавна разделялась на два основных направления: анатомо-морфологическое и физиологическое. Как всякая классификация, такое разделение условно. Действительно, как изучать отдельные органы, не принимая во внимание их функции, или изучать процессы, не касаясь тех структур, где они локализованы? В последнее время биологи стремятся теснее связать процессы с определенными внутренними структурами. Так, например, для понимания процесса дыхания важное значение имеет изучение микроскопической и субмикроскопической структуры митохондрий, где этот процесс локализован. Биологические функции многих макромолекул связаны с их формой. Хорошо известно решающее значение двухцепо-чечпой структуры ДНК.

Вложенные файлы: 1 файл

физрастение.doc

— 1.56 Мб (Скачать файл)

Содержание воды в различных  органах растений колеблется в довольно широких пределах. Оно изменяется в зависимости от условий внешней среды, возраста и вида растений. Так, содержание воды в листьях салата составляет 95%, кукурузы — 77%. Количество воды неодинаково в разных органах растений: в листьях подсолнечника воды содержится 81%, в стеблях — 88%, в корнях — 71%. Содержание воды, равное 6—11%, характерно главным образом для воздушно-сухих семян, в которых процессы жизнедеятельности заторможены.

Вода содержится в живых клетках, в мертвых элементах ксилемы и в межклетниках. В межклетниках вода находится главным образом в парообразном состоянии. Основными'испаряющими органами растения являются листья. В связи с этим естественно, что наибольшее количество наров воды заполняет межклетники листьев. В жидком состоянии вода находится в различных частях клетки: клеточной оболочке, вакуоли, протоплазме. Вакуоли — наиболее богатая водой часть клетки, где содержание ее достигает 98%. При наибольшей оводненности содержание воды в протоплазме составляет 95%. Наименьшее содержание воды характерно для клеточных оболочек. Вода в клеточных оболочках заполняет промежутки между фибриллами целлюлозы и удерживается силами поверхностного натяжения в менисках. Часть молекул воды находится в адсорбированном состоянии на поверхности фибрилл, составляющих клеточную оболочку. Количественное определение содержания воды в клеточных оболочках затруднено; по-видимому, оно колеблется от 30 до 50%.

Формы воды в разных частях растительной клетки также различны. В вакуолярном клеточном соке преобладает вода, удерживаемая сравнительно низкомолекулярными соединениями (осмотически-связанная) и свободная вода. В оболочке растительной клетки вода связана главным образом высокополимерными соединениями (целлюлозой, гемицеллюлозой, пектиновыми веществами), т. е. коллоидно-свя-запная вода. Кроме того, в оболочке есть и свободная вода в капиллярах, которые образуются между микрофибриллами целлюлозы.

В самой цитоплазме имеется вода свободная, коллоидно- и осмотически-связанная. Вода, находящаяся на расстоянии до 1 нм от поверхности белковой молекулы, связана прочно и имеет льдоподоб-ную структуру (коллоидно-связанная вода). Кроме того, в протоплазме имеется определенное количество ионов, а следовательно, часть воды осмотически связана.

Физиологическое значение свободной  и связанной воды различно. Большинство исследователей полагает, что интенсивность физиологических процессов, в том числе и темпов роста, зависит в первую очередь от содержания свободной воды. Вместе с тем имеется прямая корреляция между содержанием связанной воды и устойчивостью растений против неблагоприятных внешних условий. Однако указанные физиологические корреляции наблюдаются не всегда.

3. ВОДНЫЙ БАЛАНС РАСТЕНИЯ

Для своего нормального существования клетки и растительный организм в целом должны содержать определенное количество воды. Однако это легко осуществимо лишь для растений, произрастающих в воде. Для сухопутных растений эта задача осложняется тем, что вода в растительном организме непрерывно теряется в процессе испарения. Испарение воды растением достигает огромных размеров. Можно привести такой пример. Одно растение кукурузы испаряет за вегетационный период до 180 кг воды, а 1 га леса в Южной Америке испаряет в среднем за сутки 75 тыс. кг воды. Огромный расход воды связан с тем, что большинство растений обладает значительной листовой поверхностью, находящейся в атмосфере, не насыщенной парами воды. Вместе с тем развитие обширной поверхности листьев необходимо, и выработалось в процессе длительной эволюции для обеспечения нормального питания углекислотой, содержащейся в воздухе в ничтожной концентрации (0,03%). В своей знаменитой книге «Борьба растений с засухой» К. А. Тимирязев указывал, что противоречие между необходимостью улавливать углекислоту и сокращать расходование воды наложило отпечаток на строение всего растительного организма.

Для того чтобы возместить потери воды при испарении, в растение должно непрерывно поступать большое ее количество. Непрерывно идущие в растении два процесса — поступление и испарение воды — называют водным режимом   или водным балансом растений.

Для нормального роста и развития растений необходимо, чтобы расход воды примерно соответствовал приходу, или, иначе говоря, чтобы растение сводило свой водный баланс без большого дефицита. Для этого в растении в процессе естественного отбора выработались приспособления к поглощению воды (колоссально развитая корневая система), к передвижению воды (специальная проводящая система), к сокращению испарения (система покровных тканей и система автоматически закрывающихся устьичных отверстий).

Несмотря на все указанные приспособления, в растении часто наблюдается водный дефицит. Физиологические нарушения наступают у различных растений при разной степени водного дефицита. Есть растения, выработавшие в процессе эволюции разнообразные приспособления к перенесению обезвоживания (засухоустойчивые растения). Выяснение физиологических особенностей, определяющих устойчивость растений к обезвоживанию,— важнейшая задача, разрешение которой имеет большое не только теоретическое, но и практическое значение. Вместе с тем, для того чтобы ее решить, необходимо знание всех сторон водообмена растительного организма.

 

РАСХОДОВАНИЕ  ВОДЫ РАСТЕНИЕМ — ТРАНСПИРАЦИЯ

В основе расходования воды растительным организмом лежит физический процесс испарения —переход воды из жидкого в парообразное состояние, происходящий при соприкосновении органов растения с не насыщенной водой атмосферой. Однако этот процесс осложнен физиологическими и анатомическими особенностями растения, и его называют транспирацией.

1. ЗНАЧЕНИЕ ТРАНСПИРАЦИИ

К. А. Тимирязев назвал транспирацию, в том объеме, в каком она  идет, необходимым физиологическим  злом. Действительно, в обычно протекающих размерах транспирация не является необходимой. Так, если выращивать растения в условиях высокой и низкой влажности воздуха, то, естественно, в первом случае транспирация будет идти со значительно меньшей интенсивностью. Однако рост растепий будет одинаков или даже лучше там, где влажность воздуха выше, а транспирация меньше. Известно, что большая часть всей поглощенной солнечной энергии тратится на транспирацию, которая в определенном объеме    полезна    растительному    организму.

  1. Транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете. Температура сильно транспирирующего листа может быть примерно на 7°С ниже температуры листа завядающего, не транспирирующего. Это особенно важно в связи с тем, что перегрев, разрушая хлоропласты, резко снижает процесс фотосинтеза (оптимальная температура для процесса фотосинтеза около 30—33°С). Именно благодаря высокой транспирирующей способности многие растения хорошо    переносят    повышенную температуру.
  2. Транспирация создает непрерывный ток воды из корневой системы к листьям, который связывает все органы растения в единое целое. 3. С транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом, чем интенсивнее транспирация, тем быстрее идет процесс передвижения.

2. ЛИСТ КАК  ОРГАН ТРАНСПИРАЦИИ

Основным транспирирующим органом  является лист. Средпяя толщина листа составляет 100—200 мкм. Паренхимиые клетки листа расположены рыхло, между ними имеется система межклетников, составляющая в общей сложности от 15 до 25% объема листа. Лист окружен покровной тканью — эпидермисом, состоящим из компактно расположенных клеток, наружные стенки которых утолщены. Листья большинства растений покрыты кутикулой, в состав которой входят оксимонокарбоновые кислоты, содержащие по 16—28 атомов углерода и по 2—3 гидроксильных группы. Эти кислоты соединены друг с другом в цепочки с помощью    эфирных    связей. Кутикула

 

варьирует как по составу, так и  по толщине. Более развитой кутикулой характеризуются листья светолюбивых растений по сравнению с теневыносливыми и засухоустойчивых по сравнению с влаголюбивыми. Кутикула вместе с клетками эпидермиса образует как бы барьер на пути испарения паров воды. При этом особенно значительную преграду составляет кутикула. Удаление кутикулы во много раз повышает интенсивность, испарения. Сопротивление выходу паров воды оказывают в определенной мере и утолщенные стенки клеток эпидермиса. Все эти особенности выработались в процессе эволюции как приспособление к сокращению испарения. Для соприкосновения листа с атмосферой имеются устьица. Устьица — одно из оригинальных приспособлений листа, обладающее способностью открываться и закрываться. Обычно устьичные отверстия ограничены двумя замыкающими клетками, стенки которых неравномерно утолщены. У двудольных растений замыкающие клетки бобовидной, или полулунной, формы, при этом их внутренние прилегающие друг к другу стенки более толстые, а внешние — более тонкие. Когда воды мало, замыкающие клетки плотно прилегают друг к другу и устьичная щель закрыта. Когда воды в замыкающих клетках много, то она давит на стенки и более тонкие стенки растягиваются сильнее, а более толстые втягиваются внутрь, между замыкающими клетками появляется щель. У однодольных растений строение замыкающих клеток несколько иное. Они представлены двумя удлиненными клетками, на концах которых стенки более тонкие. При насыщении водой более тонкие степки на концах растягиваются и раздвигают замыкающие клетки, благодаря чему образуется щель  (рис. 23).

Число устьичных отверстий колеблется в зависимости от вида растения от 1 до 60 тыс. на 1 см2 листа. Большая часть устьиц расположена на нижней стороне листа. Диаметр устьичных щелей составляет всего 3—12 мкм.

Устьица соединяют внутренние пространства листа с внешней средой. Вода поступает  в лист через сеть жилок, в которых  расположены сосудистые элементы. Возможны два пути испарения: 1) через наружные стенки клеток эпидермиса в атмосферу; 2) через стенки клеток мезофилла в межклеточное пространство листа и далее в парообразном состоянии через устьица. В связи с этим различают устъичную и кутикулярную транспирацию. В том, что действительно испарение идет не только через устьица, но и через кутикулу, легко убедиться. Так, если взять листья, у которых устьица расположены только с нижней стороны (например, листья яблони), и замазать эту сторону вазелином, то испарение воды будет продолжаться, хотя и в значительно уменьшенном размере. Следовательно, определенное количество воды испаряется через кутикулу.

Кутикулярная транспирация обычно составляет около 10% от общей потери воды листом. Однако в некоторых случаях у растений, листья которых характеризуются слабым развитием кутикулы, доля этого вида транспирации может повышаться до 30%. Имеет значение также возраст листа. Молодые листья, как правило, имеют слабо развитую кутикулу и, следовательно, более интенсивную кутикулярную транспирацию. Наименьшая кутикулярная транспирация наблюдается у листьев, закончивших свой рост. У старых листьев доля кутику-лярной транспирации снова возрастает, так как, хотя кутикула и сохраняет достаточную толщину, в ней появляются трещины, через которые легко проходят пары воды.

Все же основная часть воды испаряется через устьица. Процесс устьичной транспирации можно подразделить на ряд этапов.

Первый этап — это переход воды из клеточных оболочек, где она находится в капельно-жидком состоянии, в межклетники (парообразное состояние). Это собственно процесс испарения. Важно подчеркнуть, что уже на этом этапе растение обладает способностью регулировать процесс транспирации (внеустьичная регулировка). Это связано с несколькими причинами: 1. Между всеми частями клетки существует водное равновесие. Чем меньше воды в клетке, тем выше становится концентрация клеточного сока. А это, в свою очередь, будет уменьшать интенсивность испарения, 2. Между микро- и макрофибриллами целлюлозы, составляющими клеточные оболочки, имеются капиллярные промежутки. Вода испаряется именно из капилляров. Когда воды в клетках достаточно, клеточные оболочки насыщены водой, мениски в капиллярах имеют выпуклую форму, силы поверхностного натяжения ослаблены. В этом случае молекулы воды легко отрываются и переходят в парообразное состояние, заполняя межклетники. При уменьшении содержания воды мениски в капиллярах становятся более вогнутыми, это увеличивает силы поверхностного натяжения и вода с большей силой удерживается в клеточных оболочках. Чем более вогнут мениск, тем путь молекул воды до межклеточных пространств более длинен и извилист. В результате интенсивность испарения сокращается. Таким образом, уже на этом первом этапе растение испаряет тем меньше воды, чем меньше ее содержится.

Второй этап — это выход паров воды из межклетников через устьичные щели. Поверхность всех клеточных стенок, соприкасающихся с межклетными пространствами, превышает поверхность лис

та примерно в 10—30 раз. Все же если устьица закрыты, то все   это  пространство  быстро   насыщается парами воды    и переход  воды из жидкого в парообразное состояние прекращается. Иная    картина наблюдается    при   открытых   устьицах. Как только часть паров воды выйдет из    межклетников    через устьичные    щели,  так  сейчас  же этот недостаток   восполняется    за счет испарения воды   с поверхности клеток. Поэтому степень открытости   устьиц   является   основным механизмом,    регулирующим интенсивность транспирации. При открытых устьицах общая поверхность устьичных щелей составляет всего 1—2% от площади листа. Казалось бы, это должно очень сильно уменьшать испарение по сравнению с    испарением    свободной водной поверхности той же площади, что и лист. Однако это не так. Сравнение   испарения  листа  с испарением со свободной водной поверхности той же площади показало, что оно идет не в 100 раз, как это следовало бы, исходя из размеров открытой площади (1%), а всего в 2 раза медленнее. Объяснение этому явлению было дапо в исследованиях английских физиологов Брауна и Эскомба, которые установили, что испарение из ряда мелких отверстий идет быстрее, чем из одного крупного той же площади. Это связано с так называемым явлением краевой диффузии. При диффузии из отверстий, отстоящих друг от друга на некотором расстоянии, молекулы воды, расположенные по краям,    рассеиваются быстрее. Естественно, что таких краевых молекул значительно больше в ряде мелких отверстий по сравнению с одним крупным (рис. 24). В связи с этим для малых отверстий интенсивность испарения пропорциональна их диаметру, а не площади. Это видно из данных таблицы 2.

 

Указанная закономерность проявляется  в том случае, если мелкие поры расположены достаточно далеко друг от друга. Структура листа удовлетворяет указанным требованиям. Поры (устьица) имеют малый диаметр и достаточно удалены друг от друга. При открытых устьицах выход паров воды идет достаточно интенсивно, закрытие устьиц резко тормозит испарение. Именно на этом этапе вступает в действие устьичная регулировка транспирации. При недостатке воды в листе устьица автоматически закрываются.

Полное закрывание устьиц сокращает транспирацию примерно на 90%- Вместе с тем уменьшение диаметра устьичных щелей не всегда приводит к соответственному сокращению транспирационного процесса. Определения показали, что устьица должны закрыться больше чем на '/г, для того чтобы это сказалось на уменьшении интенсивности транспирации.

Информация о работе Физиология растений