Физика

Автор работы: Пользователь скрыл имя, 12 Июня 2012 в 18:53, творческая работа

Краткое описание

Природа теплоты

Еще в 1744—1745 гг. М. В. Ломоносов в своих «размышлениях о причине теплоты и холода» высказал утверждение о том, что тепловые явления обусловлены движением частиц тела — его молекул.

Чтобы стало очевидным принципиальное отличие взглядов Ломоносова от господствовавших тогда теорий, остановимся кратко на тех представлениях о теплоте, которые прочно сложились к XVIII столетию.

Теплоту представляли себе в виде невесомой и невидимой жидкости, пропитывающей поры тела, как вода пропитывает губку. Действительно, мы замечаем, что тепло от огня в очаге передается через стенки котла в воду, из воды — в погруженную в нее ложку; горячая ложка, опущенная в холодную воду, нагревает последнюю. Всякий сумеет найти множество примеров, как бы подкрепляющих представление о теплоте как о жидкости, протекающей через тончайшие поры тела. Что эта жидкость не только невидима, но и невесома, было к тому времени установлено сравнительным взвешиванием холодного и горячего тел. Эту жидкость назвали теплородом.

Ломоносов решительно отверг теорию теплорода. Однако многие крупные ученые Европы продолжали защищать представление о теплороде. Опытное доказательство правильности идей Ломоносова было дано лишь в конце XVIII в. Это сделал английский физик Румфорд.

Вложенные файлы: 1 файл

Экзаменационные билеты по фоизике (Автосохраненный).docx

— 108.68 Кб (Скачать файл)

Схематическое поведение  потенциала центральных сил V как функции r показано на рис 1. Оно несколько напоминает поведение потенциала двух нейтральных атомов. В качестве иллюстрации приведем аналитическую зависимость от расстояния r для потенциала Рида, характеризующего взаимодействие двух нейтронов в состоянии с орбитальным моментом, равным нулю:

МэВ,

где   и  . Имеющиеся экспериментальные данные свидетельствуют о том, что нуклоны взаимодействуют как весьма сложные объекты.

Теоретическая интерпретация  экспериментов по исследованию ядерн. сил осложнена тем, что еще не создана последовательная теория сильных взаимодействий.

Разработка теории ядерных сил была начата в 1935 году японским физиком Хидэки Юкавой, который предположил, что ядерные силы возникают за счет того, что нуклоны обмениваются π- мезоном с массой 140 МэВ (π -мезон был открыт 10 лет спустя). Такой механизм объясняет конечный радиус действия ядерных сил (он оказывается равным около  ферми) и приблизительную величину притяжения на больших расстояниях (r > 1,5 ферми).

В течение 60-х годов 20 века, когда были открыты более  тяжелые мезоны (r и w), их также включили в схему обмена между нуклонами. Это позволило качественно объяснить возникновение спин-орбитальных сил и отталкивательного кора.

Для объяснения притяжения нужной силы на расстоянии около 1 ферми  вводятся гипотетические скалярные  мезоны. В настоящее время вместо скалярных мезонов вводится обмен  парой скоррелированных  -мезонов.

Расчет энергий  связи ядер H, He, He с использованием парных потенциалов проводится теперь с точностью около 3%. Оказалось, что такой расчет систематически приводит к недосвязанности ядер (по сравнению с экспериментом). Например, для H и He расчет дает энергию связи на 20% меньше экспериментальной величины, для He — на 30-40% меньше. Расчеты сечений реакций в трех- четырехнуклонных системах в среднем лучше согласуются с опытом в области малых энергий (до 20 МэВ).

Все это в сочетании  с трудностью теоретического объяснения величины кора заставляет признать теоретическую  картину ядерных сил не вполне удовлетворительной. Возникшая в последние годы кварк-глюонная картина строения частиц, участвующих в сильных взаимодействиях (адронов), представляет нуклон как систему из трех валентных кварков, взаимодействующих за счет обменаглюонами и находящихся внутри некоторого «пузыря» (обычно называемого кварковым мешком), окруженного давящим на него снаружи вакуумом. В такой картине ядерные силы на малых расстояниях доминирует механизм слипания двух нуклонных мешков с образованием общего шестикваркового менка. Поэтому два нуклона не могут быть рядом, на расстоянии, меньшем размеров общего мешка, что позволяет просто и количественно точно объяснить возникновение отталкивательного кора в ядерных силах (а также и ряд других характеристик яд. сил). Несомненно, кварк-глюонная картина ядерных сил является наиболее фундаментальной, однако в ее конкретном осуществлении делаются только первые шаги.

Дефе́кт ма́ссы. В связи с различием в советской и зарубежной номенклатуре понятие дефекта масс не является однозначно определенным.

Советская номенклатура:

Дефе́кт ма́ссы — разность между массой покоя атомного ядра данного изотопа, выраженной в атомных единицах массы, имассовым числом данного изотопа. В современной науке для обозначения этой разницы пользуются термином избыток массы. Как правило, избыток массы выражается в кэВ.

Зарубежная номенклатура:

Дефе́кт ма́ссы (англ. mass defect) — разность между суммой масс покоя нуклонов, составляющих ядро данного нуклида, имассой покоя атомного ядра этого нуклида, выраженная в атомных единицах массы. Обозначается обычно  .

 

 
Согласно соотношению Эйнштейна, энергия связи пропорциональна дефекту массы:

где   — дефект массы и с — скорость света в вакууме.

Дефект массы характеризует устойчивость ядра.

Дефект массы, отнесённый к одному нуклону, называется упаковочным множителем.

ЭНЕРГИЯ СВЯЗИ  АТОМНЫХ ЯДЕР 
 
Важнейшую роль во всей ядерной физике играет понятие энергии связи ядра. Энергия связи позволяет объяснить устойчивость ядер, выяснить, какие процессы ведут к выделению ядерной энергии. Нуклоны в ядре прочно удерживаются ядерными силами. Для того чтобы удалить нуклон из ядра, надо совершить довольно большую работу, т. е. сообщить ядру значительную энергию.

Под энергией связи ядра понимают ту энергию, которая необходима для  полного расщепления ядра на отдельные  нуклоны. На основе закона сохранения энергии можно также утверждать, что энергия связи ядра равна  той энергии, которая выделяется при образовании ядра из отдельных частии.

Энергия связи атомных  ядер очень велика. Но как ее определить?

В настоящее время рассчитать энергию связи теоретически, подобно  тому как это можно сделать для электронов в атоме, не удается. Выполнить соответствующие расчеты можно, лишь применяя соотношение Эйнштейна между массой и энергией: 
 
Е = mс2.    (13.3) 
 
Точнейшие измерения масс ядер показывают, что масса покоя ядра М21 всегда меньше суммы масс входящих в его состав протонов и нейтронов: 
 
Мя< Zm+ Nmn.                                             (13.4) 
 
Существует, как говорят, дефект масс: разность масс 
 
М = Zm+ Nm- Мя 
 
положительна. В частности, для гелия масса ядра на 0,75% меньше суммы масс двух протонов и двух нейтронов. Соответственно для гелия в количестве вещества один моль  M = 0,03 г.

Уменьшение массы при  образовании ядра из нуклонов означает, что при этом уменьшается энергия  этой системы нуклонов на значение энергии связи Есв: 
 
Есв =  Мс= (Zm+ Nm- Mя) с2.                     (13.5) 
 
Но куда при этом исчезают энергия Есв и масса  M? 
 
При образовании ядра из частиц последние за счет действия ядерных сил на малых расстояниях устремляются с огромным ускорением друг к другу. Излучаемые при этом  -кванты как раз обладают енергией Есв   и массой  .

Энергия связи — это энергия, которая выделяется при образовании ядра из отдельных частиц, и соответственно это та энергия, которая необходима для расщепления ядра на составляющие его частицы.

О том, как велика энергия  связи, можно судить по такому примеру: образование 4 г гелия сопровождается выделением такой же энергии, что  и при сгорании 1,5—2 вагонов каменного  угля.

Билет № 4

Особенности жидкого  состояния вещества. Молекулы вещества в жидком состоянии расположены вплотную друг к другу, как и в твердом состоянии. Поэтому объем жидкости мало зависит от давления. Постоянство занимаемого объема является свойством, общим для жидких и твердых тел и отличающим их от газов, способных занимать любой предоставленный им объем.   

Возможность свободного перемещения молекул относительно друг друга обусловливает свойство текучести жидкости. Тело в жидком состоянии, как и в газообразном, не имеет постоянной формы. Форма  жидкого тела определяется формой сосуда, в котором находится жидкость, действием внешних сил и сил  поверхностного натяжения. Большая  свобода движения молекул в жидкости приводит к большей скорости диффузии в жидкостях по сравнению с  твердыми телами, обеспечивает возможность  растворения твердых веществ  в жидкостях.

Поверхностное натяжение. С силами притяжения между молекулами и подвижностью молекул в жидкостях связано проявление сил поверхностного натяжения.   

Внутри жидкости силы притяжения, действующие на одну молекулу со стороны  соседних с ней молекул, взаимно  компенсируются. Любая молекула, находящаяся  у поверхности жидкости, притягивается  молекулами, находящимися внутри жидкости. Под действием этих сил молекулы с поверхности жидкости уходят внутрь жидкости и число молекул, находящихся на поверхности, уменьшается до тех пор, пока свободная поверхность жидкости не достигнет минимального из возможных в данных условиях значения. Минимальную поверхность среди тел данного объема имеет шар, поэтому при отсутствии или пренебрежимо малом действии других сил жидкость под действием сил поверхностного натяжения принимает форму шара. 

Свойство сокращения свободной  поверхности жидкости во многих явлениях выглядит таким образом, будто жидкость покрыта тонкой растянутой упругой пленкой, стремящейся к сокращению.   

Силой поверхностного натяжения  называют силу, которая действует  вдоль поверхности жидкости перпендикулярно  к линии, ограничивающей эту поверхность, и стремится сократить ее до минимума.    

Подвесим на крючок пружинного динамометра П-образную проволоку. Длина стороны АВ равна l. Начальное растяжение пружины динамометра под действием силы тяжести проволоки можно исключить из рассмотрения установкой нулевого деления шкалы против указателя действующей силы.    

Опустим проволоку  в воду, затем будем медленно опускать вниз сосуд с водой (рис. 92). Опыт показывает, что при этом вдоль проволоки  образуется пленка жидкости и пружина динамометра растягивается. По показаниям динамометра можно определить силу поверхностного натяжения. При этом следует учесть, что пленка жидкости имеет две поверхности (рис. 93) и сила упругости  равна по модулю удвоенному значению силы поверхностного натяжения  :

 

Жидкости занимают промежуточное  положение между газообразными и твердыми веществами. При температурах, близких к температурам кипения, свойства жидкостей приближаются к свойствам газов; при температурах, близких к температурам плавления, свойства жидкостей приближаются к свойствам твердых веществ. Если для твердых веществ характерна строгая упорядоченность частиц, распространяющаяся на расстояния до сотен тысяч межатомных или межмолекулярных радиусов, то в жидком веществе обычно бывает не более нескольких десятков упорядоченных частиц - объясняется это тем, что упорядоченность между частицами в разных местах жидкого вещества так же быстро возникает, как и вновь «размывается» тепловым колебанием частиц. Вместе с тем общая плотность упаковки частиц жидкого вещества мало отличается от твердого вещества - поэтому их плотность близка к плотности твердых тел, а сжимаемость очень мала. Например, чтобы уменьшить объем, занимаемый жидкой водой, на 1%, требуется приложить давление ~ в 200 атм, тогда как для такого же уменьшения объема газов требуется давление порядка 0,01 атм. Следовательно, сжимаемость жидкостей примерно и 200 : 0,01 = 20000 раз меньше сжимаемости газов.  
Выше отмечалось, что жидкости имеют определенный собственный объем и принимают форму сосуда, в котором находятся; эти их свойства значительно ближе к свойствам твердого, чем газообразного вещества. Большая близость жидкого состояния к твердому подтверждается также данными по стандартным энтальпиям испарения ∆Н°исп и стандартным энтальпиям плавления ∆Н°пл. Стандартной энтальпией испарения называют количество теплоты, необходимое для превращения 1 моль жидкости в пар при 1 атм (101,3 кПа). То же количество теплоты выделяется при конденсации 1 моль пара в жидкость при 1 атм. Количество теплоты, расходуемое на превращение 1 моль твердого тела в жидкость при 1 атм, называют стандартной энтальпией плавления (то же количество теплоты высвобождается при «замерзании» («отвердевании») 1 моль жидкости при 1 атм). Известно, что ∆Н°пл намного меньше соответствующих значений ∆Н°исп, что легко понять, поскольку переход из твердого состояния в жидкое сопровождается меньшим нарушением межмолекулярного притяжения, чем переход из жидкого в газообразное состояние.  
 
Ряд других важных свойств жидкостей больше напоминает свойства газов. Так, подобно газам жидкости могут течь - это их свойство называется текучестью. Сопротивляемость течению определяется вязкостью. На текучесть и вязкость влияют силы притяжения между молекулами жидкости, их относительная молекулярная масса, а также целый ряд других факторов. Вязкость жидкостей ~ в 100 раз больше, чем у газов. Так же, как и газы, жидкости способны диффундировать, хотя и гораздо медленнее, поскольку частицы жидкости упакованы гораздо плотнее, чем частицы газа.  
 
Одно из важнейших свойств именно жидкости - ее поверхностное натяжение (это свойство не присуще ни газам, ни твердым веществам). На молекулу, находящуюся в жидкости, со всех сторон равномерно действуют межмолекулярные силы. Однако на поверхности жидкости баланс этих сил нарушается, и вследствие этого «поверхностные» молекулы оказываются под действием некой результирующей силы, направленной внутрь жидкости. По этой причине поверхность жидкости оказывается в состоянии натяжения. Поверхностное натяжение - это минимальная сила, сдерживающая движение частиц жидкости в глубину жидкости и тем самым удерживающая поверхность жидкости от сокращения. Именно поверхностным натяжением объясняется «каплевидная» форма свободно падающих частиц жидкости. 

 

 
Радиоактивность (от лат. radio - излучаю, radius - луч и activus - действенный), самопроизвольное (спонтанное) превращение неустойчивого изотопа химического элемента в другой изотоп (обычно - изотоп другого элемента). Сущность явления Р. состоит в самопроизвольном изменении состава атомного ядра, находящегося в основном состоянии либо в возбуждённом долгоживущем (метастабильном) состоянии. Такие превращения сопровождаются испусканием ядрами элементарных частиц либо других ядер, например ядер 2He (a-частиц). Все известные типы радиоактивных превращений являются следствием фундаментальных взаимодействий микромира: сильных взаимодействий (ядерные силы) или слабых взаимодействий. Первые ответственны за превращения, сопровождающиеся испусканием ядерных частиц, например a-частиц, протонов или осколков деления ядер: вторые проявляются в b-распаде ядер. Электромагнитные взаимодействия ответственны за квантовые переходы между различными состояниями одного и того же ядра, которые сопровождаются испусканием гамма-излучения. Эти переходы не связаны с изменениями состава ядер и поэтому, согласно современной классификации, не принадлежат к числу радиоактивных превращений. Понятие "Р." распространяют также на b-распад нейтронов.

Закон радиоактивного распада — закон, открытый Фредериком Содди и Эрнестом Резерфордом экспериментальным путём и сформулированный в 1903 году. Современная формулировка закона:

,

что означает, что число  распадов за интервал времени   в произвольном веществе пропорционально числу имеющихся в образце атомов  .

В этом математическом выражении   — постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени и имеющая размерность с−1. Знак минус указывает на убыль числа радиоактивных ядер со временем.

Этот закон считается  основным законом радиоактивности, из него было извлечено несколько  важных следствий, среди которых  формулировки характеристик распада — среднее время жизни атома и период полураспада

Билет № 5


Информация о работе Физика