Загустители и гелеобразователи

Автор работы: Пользователь скрыл имя, 05 Июня 2013 в 15:36, реферат

Краткое описание

Будучи введенными в жидкую пищевую систему в процессе приготовления пищевого продукта, загустители и гелеобразователи связывают воду, в результате чего пищевая коллоидная система теряет
свою подвижность и консистенция пищевого продукта изменяется. Эффект изменения консистенции (повышение вязкости или гелеобразование) будет определяться, в частности, особенностями химического строения введенной добавки.
В химическом отношении добавки этой труппы являются полимерными соединениями, в макромолекулах которых равномерно распределены гидрофильные группы, взаимодействующие с водой. Они могут участвовать также в обменном взаимодействии с ионами водорода и металлов (особенно кальция) и, кроме того, с органическими молекулами меньшей молекулярной массы.

Вложенные файлы: 1 файл

ЗАГУСТИТЕЛИ И ГЕЛЕОБРАЗОВАТЕЛИ.docx

— 368.61 Кб (Скачать файл)

 

Агар-агар (агар) получают из морских красных водорослей родов Gracilaria, Gelidium, Ahnfeltia, произрастающих в Белом море и Тихом океане. В зависимости от вида водорослей состав выделенных полисахаридов может изменяться. Агар-агар незначительно растворяется в холодной воде и набухает в ней. В горячей воде образует коллоидный раствор, который при охлаждении дает хороший прочный гель, обладающий стекловидным изломом. У агара-агара этот процесс осуществляется за счет образования двойных спиралей и их ассоциации независимо от содержания катионов, сахара или кислоты. Гелеобразующая способность агара-агара в 10 раз выше, чем у желатина. При нагревании в присутствии кислоты способность к гелеобразованию снижается. Гели стабильны при рН выше 4, 5 и термообратимы. Агар используют в производстве кондитерских изделий (желейный мармелад, пастила, зефир), мясных и рыбных студней, различных желе и пудингов, а также для осветления соков. В составе мороженого агар-агар предотвращает образование кристаллов льда.

Агаропектин — смесь кислых полисахаридов сложного строения, аналогичного агарозе, с рядом отличий: заменой части остатков 3,6-ангидро-α, L-галактозы остатками 6-сульфата-α, L-галактозы, наличием остатков серной кислоты, связанных эфирными связями с различными группами ОН, и др.

Агароид (черноморский агар). Получают из водорослей филлофоры, растущих в Черном море. Плохо растворим в холодной воде, в горячей воде образует коллоидный раствор, при охлаждении которого образуется гель, имеющий вязко-тягучую консистенцию. Гелеобразующая способность этой добавки в два раза ниже, чем у агара.

Каррагинаны (Е407). Объединяют семейство полисахаридов, содержащихся наряду с агаром и фурцеллераном в красных морских водорослях. По химической природе каррагинаны близки к агарои-дам и представляют собой неразветвленные сульфатированные гетерогликаны, молекулы которых построены из остатков производных D-галактопиранозы со строгим чередованием α-(1-3) и β-(1-4)-связей между ними, т. е. из повторяющихся дисахаридных звеньев, включающих остатки β-D-галактопиранозы и 3,6-ангидро-α-D-галактопиранозы. В зависимости от особенностей строения дисахаридных повторяющихся звеньев, различают три основных типа каррагинанов, для обозначения которых используют буквы греческого алфавита: к-каппа, i-йота и Х-ламбда. Фрагменты формул этих типов каррагинанов представлены ниже.

к-Каррагинан                                         ι -Каррагинан

λ-Каррагинан

В к- и ι-каррагинанах левые галактозные остатки дисахаридных повторяющихся звеньев содержат сульфатированные гидроксильные группы при четвертом атоме углерода, а правый галактозный остаток находится в 3,6-ангидроидной форме и имеет сульфатированный гидроксил при втором атоме углерода в ι-каррагинане и несульфатированный — в к-типе.

В λ.-каррагинане в левом галактозном остатке дисахаридного звена сульфатирован гидроксил при втором атоме углерода, а в правом — при втором и шестом. Отличительные особенности строения каррагинанов различных типов приведены в табл. 3.14.

 

Таблица   3.14

Особенности строения каррагинанов различных типов

Состав

Содержание, %

 

к

ι

λ

Сульфатный эфир (сульфатная группа)

3,6-Ангидрогалактоза

25

34

32

30

35

Следы


 

Принципиальным  для условий формирования гелевых структур является конформационное состояние моносахаридных остатков. В повторяющихся дисахаридных звеньях, формирующих макромолекулы каррагинанов, оба галактопиранозных остатка находятся в кон-формации «кресла», причем В к- и ι -каррагинанах правый остаток имеет конформацию 4С1 а левый — 1С4.

 

Конформация                Конформация

кресла4С1                      кресла1С4

В λ -каррагинане оба галактозных фрагмента находятся в конформации 4С1. Именно наличие двух типов конформаций в дисахаридном звене обусловливает способность у к- и ι -каррагинановых молекул к образованию двойных спиралей, ассоциация которых приводит к гелеобразованию. У молекул λ -каррагинана такая способность отсутствует.

Технологический процесс получения каррагинанов основан на их экстракции горячей водой с последующим выделением из раствора. В промышленности используют два способа выделения:

• через  гелеобразование в среде с  хлоридом калия для выделения  гелеобразующих каррагинанов;

• осаждением из спирта при выделении смеси  всех трех типов. Основными источниками  промышленного получения каррагинанов являются красные морские водоросли трех родов: Chondrus crispis (ирландский мох), содержащие к- и λ-каррагинаны;

• Eucheuma species, содержащие к- и ι-каррагинаны;

• Gigartina species, содержащие к- и λ-каррагинаны.

Для получения  целевых продуктов заданного  состава и свойств обычно используют смеси.

В соответствии с международным законодательством  каррагинаны представляют собой очищенный экстракт морских водорослей, имеющий молекулярную массу более 100 000. У коммерческих препаратов молекулярная масса около 500000, содержание сульфатных групп — не менее 20 %.

Сульфатные  группы в молекулах коммерческих каррагинанов могут быть замещены на ионы натрия, калия или аммония. Коммерческие препараты обычно содержат сопутствующий полисахарид — фурцеллеран.

Основные  свойства каррагинанов представлены в табл. 3.15, из которой видно, что все три вида каррагинанов растворимы в горячей воде, а в виде натриевых солей они растворимы в холодной воде с образованием вязких растворов.

Таблица  3.15

Свойства  каррагинанов

Свойство

Тип каррагинана

к

ι

λ

Растворимость: в воде:

80 °С

20 °С

 

Да 

Соль Na— да, а соли К-, Са и NH4- — набухают

 

Да 

Соль Na — да

Соль Са набухает с образованием тиксотропной дисперсии

Да 

Да 

 

Да

в молоке:

80 °С

20 °С

 

Да 

Нет

 

Да

Нет

 

Да 

Загущает

в 50%-ном растворе сахара

Да — при нагревании

Нет

Да

в 5%-ном растворе соли:

горячем

холодном

 

Набухает

Нет

 

Набухает

Нет

 

Да 

Да

Гелеобразование :

прочные гели

текстура геля

 

С ионами К

Хрупкая

 

С ионами Са

Эластичная

 

Нет

Синерезис

Стабильность при замораживании  — оттаивании

Да 

 

Нет

Нет

 

Да

Нет

 

Да

С белками молока

Стабильность гелей в  кислой среде

Хрупкий гель

устойчивы при рН >3,8

Эластичный гель

устойчивы при рН >3,8

Слабый гель

Не применяется


Функциональные  свойства каррагинанов в пищевых системах включают:

• водосвязываюшую способность;

• стабилизацию эмульсий и суспензий;

• регулирование  текучих свойств;

• образование  устойчивых гелей при комнатной  температуре.

Хотя  каррагинаны не являются поверхностно-активными веществами, они способны стабилизировать дисперсные системы типа эмульсий и суспензий благодаря их загущающим и тиксотропным свойствам, препятствующим разделению системы. Изменение текучих свойств жидкой дисперсной системы в присутствии каррагинанов приводит не только к ее стабилизации, но и к формированию определенной консистенции.

к- и ι-Каррагинаны — гелеобразователи, а λ-каррагинан — загуститель.

Растворы  гелеобразующих каррагинанов становятся твердыми и образуют гели при температуре ниже 49—55°С. Эти гели устойчивы при комнатной температуре, но могут быть вновь расплавлены при нагревании до температуры, превышающей температуру гелеобразо-вания на 5—10°С. При охлаждении такого расплава вновь образуется гель (рис. 3.6).

Таблица   3.16

Дозировки каррагинанов в пищевых системах

Пищевые системы

Концентрация, % (+ синергисты)

I. Системы на водной основе

1.1. Гелеобразование при повышенных температурах

Десерты

Рыбные гели

Фруктовые гели

Томатные соусы 

Сыры

0,5-1,0

0,5-1,0

0,8-1,2

0,1—0,2 (+ крахмал) 

0,2-0,3

1.2. Загущение при повышенных температурах

Салатные соусы 

Майонезы

0,2-0,5

0,4—0,6 (+ крахмал)

1.3. Загущение при низких температурах

Майонезы 

Салатные соусы

0,4—0,7 (+ ксантан)

0,2-1,0

 2. Системы на молочной основе

2.1. Гелеобразование при повышенных температурах

Фруктовые начинки к пирогам

0,2—0,3

2.2. Загущение при повышенных температурах

Шоколадное молоко и напитки

0,02—0,05

Сливочный сыр

0,05-0,08

2.3. Загущение при низких температурах

Мороженое (сухая смесь)

Выпечка

0,5—0,8

2,0—3,0


Дозировки каррагинанов в различных пищевых системах составляют в зависимости от технологической задачи от 0,01 до 1,2 %. В соответствии с рекомендациями ФАО—ВОЗ предельное суточное поступление каррагинанов с пищевыми продуктами может достигать 75 мг/кг массы тела человека.

Фурцеллеран (датский агар). Полисахарид, экстрагируемый из красных морских водорослей Furcellaria fastigiata, по своим свойствам

занимает  промежуточное положение между  агаром и каррагинанами. Набухает в холодной воде, для солюбилизации необходимо нагревание до температуры 75—80°С, образует термообратимые гели. Применяется в молочных пудингах, фруктовых начинках для пирогов, желеобразных мясных продуктах.

Ксантановая камедь (Е415). Иногда используется название «камедь кукурузного сахара». Ксантаны представляют собой гетерополи-сахариды с молекулярной массой от одного до нескольких миллионов, молекулы которых формируются из трех типов моносахаридов — β,D-глюкозы, α,D-маннозы и α,D-глюкуроновой кислоты в соотношении 2:2:1. Структурной единицей молекулы ксантана является повторяющийся пентасахаридный фрагмент, имеющий строение:

Молекулы  β,D-глюкозы, соединяясь 1,4-гликозидной связью, образуют основную цепь, где каждый второй глюкозный остаток содержит короткое боковое звено из трех моносахаридных единиц, в котором остаток глюкуроновой кислоты располагается между двумя остатками α,D-маннозы. Конечный остаток маннозы может содержать пируватную группу, а манноза, примыкающая к основной цепи, —

ацетатную группу при шестом углеродном атоме. Как правило, каждое второе боковое  ответвление содержит пируватную группу, однако соотношение пируватных и ацетатных групп зависит от условий получения, в частности, вида микроорганизма.

В общем  случае ксантаны представляют собой полисахариды, образующиеся как вторичные метаболиты при аэробной ферментации Сахаров (например, кукурузного сиропа) бактериями Xanthomonas campestris. Из продуктов ферментации ксантан выделяют осаждением изопропиловым спиртом с последующим отделением полученного коагулята, его промыванием водно-спиртовой смесью, прессованием, высушиванием и измельчением. Для получения ксантановой камеди стандартного качества на завершающем этапе осуществляют стандартизацию продукта путем дозированного смешивания партий.

Наличие карбоксильных (остатки глюкуроновых кислот) и пируватных кислотных групп обеспечивает ксантановым молекулам достаточно высокий отрицательный заряд. В коммерческих препаратах для пищевых целей кислотные группы нейтрализуют с образованием калиевых, натриевых или кальциевых солей.

Геллановая камедь (Е418). Представляет собой гетерополисахари-ды линейного строения, которые являются продуктами метаболизма бактерий Pseudomonas elodea. Молекулы геллана, характеризующиеся молекулярной массой порядка 500 000, состоят из тетрасахарид-ных единиц, включающих связанные между собой линейно пира-нозные кольца 1,3-β,-D-глюкозы, 1,4-β,D-глюкуроновой кислоты, 1,4-β,D-глюкозы и 1,4-α,L-рамнозы. Возможно существование свободной незамещенной и замещенной форм:

Информация о работе Загустители и гелеобразователи