Загустители и гелеобразователи

Автор работы: Пользователь скрыл имя, 05 Июня 2013 в 15:36, реферат

Краткое описание

Будучи введенными в жидкую пищевую систему в процессе приготовления пищевого продукта, загустители и гелеобразователи связывают воду, в результате чего пищевая коллоидная система теряет
свою подвижность и консистенция пищевого продукта изменяется. Эффект изменения консистенции (повышение вязкости или гелеобразование) будет определяться, в частности, особенностями химического строения введенной добавки.
В химическом отношении добавки этой труппы являются полимерными соединениями, в макромолекулах которых равномерно распределены гидрофильные группы, взаимодействующие с водой. Они могут участвовать также в обменном взаимодействии с ионами водорода и металлов (особенно кальция) и, кроме того, с органическими молекулами меньшей молекулярной массы.

Вложенные файлы: 1 файл

ЗАГУСТИТЕЛИ И ГЕЛЕОБРАЗОВАТЕЛИ.docx

— 368.61 Кб (Скачать файл)

Технологический процесс включает от 4 до 7 этапов, основным из которых является гидролиз протопектина, сопровождающийся экстракцией его из растительного сырья. В классических способах гидролиз проводят растворами минеральных кислот (НС1, H2SO4, HNO3, Н3РО4) при рН менее 2 и температуре около 85°С в течение 2—2,5 ч При этом молекулы рамногалактуронанов переходят в раствор, откуда после очистки и концентрирования их извлекают различными технологическими приемами, например осаждением из этанола. Осажденный пектин сушат, измельчают и стандартизируют, добавляя сахар или ретардатор — соль одновалентного катиона и пищевой кислоты (молочной, винной, лимонной), замедляющие процесс гелеобразования.

В некоторых  случаях степень этерификации выделенных пектинов понижают специально, для  чего концентрированный жидкий экстракт подвергают контролируемой деэтерификации кислотным, щелочным или ферментативным (с помощью фермента пектинэстера-зы) способом Наиболее быстрым является способ щелочной деэтерификации под действием гидроксида натрия или аммиака (процесс аммонолиза) Пектины, деэтерифицированные путем аммонолиза и представляющие собой амиды пектиновых кислот, получили название амидированных (рис 3.2, в) и выделены в Codex Alimentanus в отдельную подгруппу (Е440b). В соответствии с официальными требованиями ФАО—ВОЗ степень амидирования таких пектинов не должна превышать 25 %.

В зависимости  от степени этерификации все пектины  условно разделяют на две подгруппы.

высокоэтерифицированные — степень этерификации более 50 %,

низкоэтерифицированные — степень этерификации менее 50 %.

В настоящее  время выпускают несколько видов  пектинов, выделяемых из различного сырья  и отличающихся по составу и функциональным свойствам яблочный, цитрусовый, свекловичный, пектин из корзинок подсолнечника, а  также комбинированные пектины  из смешанного сырья Строение молекул  пектинов, выделяемых из различных  растительных объектов, имеет свои отличительные особенности по молекулярной массе, степени этерификации, наличию  ацетилированных гидроксильных групп (табл. 3.11)

Таблица   3.11

Особенности различных пектинов

Вин пектина

Характестика

по степени этерификации

по молекулярной массе

по наличию ацетильных групп

Яблочный

Высокоэтерифицированный

Высокомолекулярный

Неацетилированрованный

Цитрусовый

То же

Низкомолекулярный

То же

Свекловичный

Низкоэтерифицированный

То же

Метилированный

Подсолнечнико-вый

То же

Высокомолекулярный

То же


Указанные пектины отличаются также характером распределения карбоксильных групп  по длине пектиновой молекулы: в  яблочных пектинах это распределение  равномерное, а, например, в цитрусовых — нет.

Особенности химического строения пектиновых молекул, в частности, степень этерификации, определяют различия их физико-химических свойств, основными среди которых  являются растворимость, гелеобразующая и комплексообразующая способность.

Растворимость пектинов в воде повышается с увеличением  степени этерификации их молекул  и уменьшением молекулярной массы. Пектовая кислота, в молекуле которой нет этерифицированных карбоксильных групп, в воде нерастворима. При комнатной температуре в условиях интенсивного перемешивания в 100 мл воды растворяется от 4 до 8 г пектина, при температуре 60—80°С — около 10 г, т. е. максимальная концентрация водных растворов пектина может составлять 10 %. Растворимость повышается в присутствии Сахаров. Из-за наличия в пектиновых молекулах диссоциирующих свободных карбоксильных групп их водные растворы имеют кислую реакцию (рН около 3,5).

Главное свойство, на котором основано применение пектинов в пищевых технологиях, — гелеобразующая способность.

Гелевая структура растворов пектинов образуется в результате взаимодействия пектиновых молекул между собой и зависит от особенностей строения молекулы — молекулярной массы, степени этерификации, характера распределения карбоксильных групп. Кроме того, на процесс гелеобразования влияют температура, рН среды и содержание дегидратирующих веществ.

Формирование  пространственной структуры геля может  происходить двумя путями:

• за счет изменения сил электростатического  отталкивания пектиновых молекул в  присутствии дегидратирующих веществ (сахарозы) в кислой среде (сахарно-кислотное гелеобразование);

• при  участии ионов поливалентных металлов.

Тип ассоциации пектиновых молекул определяется степенью эте-рификации. Высокоэтерифицированные пектины образуют гели в присутствии кислоты (рН 3,1—3,5) при содержании сухих веществ (сахарозы) не менее 65 %, низкоэтерифицированные — в присутствии ионов поливалентных металлов, например кальция, независимо от содержания сахарозы в широком диапазоне рН (от 2,5 до 6,5). Пектины высокой степени этерификации образуют высокоэластичные гели, имеющие тенденцию к возвращению формы в исходное состояние после ее изменения при механическом сдвиге.

Пектины низкой степени этерификации в зависимости  от концентрации ионов кальция могут  давать различные по консистенции гели — от высоковязких (не восстанавливающих  исходную форму после деформирования) до высокоэластичных.

Комплексообразующая способность (образование циклических  комплексов поливалентных металлов) различных пектинов зависит от содержания свободных карбоксильных групп, т. е. степени этерификации пектиновых молекул, и не зависит от их молекулярной массы.

Способность пектиновых молекул связывать поливалентные  катионы увеличивается при снижении степени их этерификации и повышении  степени диссоциации свободных  карбоксильных групп (т. е. при повышении  рН среды), а по отношению к различным  катионам изменяется в ряду (Paskins-Hurlburt et al., 1977)

Mg < Mn < Сг < Hg < Fe < Ni < Co < Cu < Zn < Sr< Cd < Ba < Pb.

Основные  области применения пектинов связаны  с их функциональными свойствами. Гелеобразующая способность используется в кондитерской и консервной промышленности при изготовлении желейных кондитерских изделий и гелеобразной фруктово-ягодной консервной продукции. К ним относятся различные желе, мармелады, зефиры и пастила, джемы, конфитюры, а также фруктовые начинки. На способности пектиновых молекул образовывать комплексы с белками основано их использование при получении кисломолочных продуктов (йогуртов и т. п.). Молекулы высокоэтерифициро-ванных пектинов могут образовывать пектин-протеиновые комплексы. При рН 4,0—4,2 они вступают, например, во взаимодействие с молекулами казеина молока, что приводит к изменению общего заряда белковых молекул и обеспечивает их физическую стабильность в кислой среде.

Технологическая функция стабилизатора проявляется  молекулами пектина в таких дисперсных пищевых системах, как мороженое, майонезы, соки с мякотью. Аналогично некоторым видам модифицированных крахмалов пектины можно использовать в качестве низкокалорийного заменителя жиров в эмульсионных продуктах (наливные маргарины, майонезы).

Содержание  пектинов в пищевых продуктах  составляет от 0,03 до 2,0 %, т. е. от 0,3 до 20 г на 1 кг изделия.

В последнее  время пектины широко используют в качестве профилактических средств для групп населения, проживающих в зонах риска отравления тяжелыми металлами и радионуклидами, благодаря способности низкоэтерифицированных пектинов образовывать комплексные соединения с ионами цинка, свинца, кобальта, стронция, радионуклидами.

Кроме того, будучи растворимыми пищевыми волокнами, пектины являются физиологически ценными  пищевыми добавками (функциональными  ингредиентами), присутствие которых  в пищевых продуктах традиционного  рациона способствует улучшению  состояния здоровья. Специфическое  физиологическое воздействие растворимых  пищевых волокон связано с  их способностью снижать уровень  холестерина в крови, нормализовать  деятельность желудочно-кишечного  тракта, связывать и выводить из организма некоторые токсины  и тяжелые металлы. Рекомендуемое  суточное потребление пектиновых веществ  в рационе здорового человека составляет 5—6 г.

 

 

ПОЛИСАХАРИДЫ МОРСКИХ РАСТЕНИЙ

 

Коммерческие  препараты этой подгруппы пищевых  добавок объединяют полисахариды, выделяемые из красных и бурых морских  водорослей. В пищевой промышленности широко используют альгинаты, каррагинаны и агароиды.

Альгиновая кислота (Е400) и ее соли (Е401 — Е405). Эта подгруппа представляет собой полисахариды бурых морских водорослей родов Laminaria и Macrocystis (alga в переводе с латинского — водоросль), которые построены из остатков β-D-маннуроновой и α-L-гулуроно-вой кислот, находящихся в пиранозной форме и связанных в линейные цепи 1,4-гликозидными связями. Фрагменты молекул этих кислот в наиболее энергетически выгодной конформации представлены на рис. 3.5.

Рис. 3.5. Структурные фрагменты альгинатов

Распределение остатков мономеров этих кислот вдоль  полимерной цепи носит блочный характер и образует три типа блоков:

• гомополимерные блоки из монотонных последовательностей остатков β-D-маннуроновой кислоты (М-блоки);

• гомополимерные блоки из монотонных последовательностей остатков α-L-гулуроновой кислоты (Г-блоки);

• гетерополимерные блоки с регулярным чередованием остатков обеих кислот (М-Г-блоки).

Такое строение полимерных молекул приводит к образованию  кристаллических участков (зон жесткости) в Г-блоках, аморфных участков (зон  гибкости) в М-блоках и участков с  промежуточной жесткостью в гетерополимерных М-Г-блоках. Соотношение мономеров и характер их распределения в молекулах альгинатов меняются в широких пределах в зависимости от сырьевого источника. Степень полимеризации молекул составляет обычно 100—300, что соответствует молекулярной массе от 200 000 до 600 000.

Технологический процесс получения альгинатов основан на щелочной экстракции разбавленными растворами соды или щелочей в виде хорошо растворимых натриевых или калиевых солей. При под-кислении экстракта из раствора выделяют собственно альгиновые кислоты, которые после очистки и концентрирования высушивают. В связи с ограниченной стабильностью альгиновых кислот, как правило, на завершающем этапе их переводят в различные солевые формы. Статус пищевых добавок наряду с альгиновой кислотой имеют пять альгинатов (табл 3.13).

Таблица  3. 13

Пищевые альгинаты

Е- номер

Название

Природа катиона в мономерном остатке

Е400

Альгиновая кислота

Н

Е401

Альгинат натрия

Na

Е402

Алъгинат калия

К

Е403

Альгинат аммония

NH4

Е404

Альгинат кальция

1/2Ca

Е405

Пропиленгликольальгинат   (ПГА)

-СН2-СН-СН3

        |

         ОН


 

Растворимость этих добавок в воде зависит от природы катиона в мономерных остатках, формирующих молекулы рассматриваемых гетерогликанов.

Свободные альгиновые кислоты плохо растворимы в холодной воде, но набухают в ней, связывая 200—300-кратное количество воды, однако растворимы в горячей воде и растворах щелочей, образуя при подкислении гели.

Натриевые и калиевые соли альгиновых кислот легко растворяются в воде с образованием высоковязких растворов. Соли с двухвалентными катионами образуют гели или нерастворимые альгинаты.

Вязкость  растворов альгинатов связана с длиной полимерной молекулы альгината, в связи с чем коммерческие препараты имеют, как правило, определенную молекулярную массу. В этом случае вязкость растворов изменяется пропорционально концентрации добавки. При низких концентрациях повышение вязкости может быть достигнуто путем введения небольшого количества ионов кальция, которые, связывая молекулы, приводят фактически к повышению молекулярной массы и, как следствие, к повышению вязкости. Превышение дозировки ионов кальция может привести к гелеобразованию.

Образование гелевой структуры в растворах альгинатов происходит в результате взаимодействия их молекул между собой с участием ионов бивалентного кальция, причем зонами ассоциации служат участки полигулуроновой кислоты (зоны кристалличности). В связи с этим гелеобразующая способность и прочность гелей непосредственно связаны с количеством и длиной зон кристалличности. С химической точки зрения формирование геля при взаимодействии альгината с ионами кальция можно рассматривать как ионообменный процесс замены одновалентного катиона (например, натрия) в молекуле водорастворимой соли альгиновой кислоты с образованием стыковых зон через катион двухвалентного металла.

Применение  альгинатов в пищевых продуктах основано на взаимодействии их водорастворимых солевых форм в присутствии ионов кальция, что приводит к модификации реологических свойств (повышению вязкости или образованию гелевой структуры). По своим технологическим функциям альгинаты являются загустителями, гелеобразователями и стабилизаторами. Альгинат кальция проявляет также функцию пеногасителя.

Агар-агар (Е406). Смесь полисахаридов агарозы и агаропекгина. Агароза (содержание 50—80 %) — линейный полисахарид, построенный из строго чередующихся остатков β-D-галактопиранозы и 3,6-ангидро-α-L-галактопиранозы, связанных попеременно (1,4)-β и (1, 3)-α-связями:

 

 β,D-галактопираноза            3,6-α,L-галактопираноза

Информация о работе Загустители и гелеобразователи