Лекции по «Моделирование процессов и объектов в металлургии»

Автор работы: Пользователь скрыл имя, 01 Апреля 2014 в 19:50, курс лекций

Краткое описание

По мере развития технологии производства цветных металлов повышаются требования к качеству технологического процесса. В переработку поступает все более сложное, комплексное сырье, содержащее помимо основного извлекаемого металла ряд других ценных компонентов. Например, медная руда помимо меди содержит цинк, свинец, железо, серу, золото, серебро и другие примеси. Комплексное использование сырья предполагает извлечение из него всех ценных компонентов, возможное на данном уровне развития технологии.
Чем жестче требования по комплексности использования сырья, тем сложнее технологическая схема, тем больше количество операций в этой схеме, тем больше количество полупродуктов и оборотов в таких схемах. Управлять такими схемами и проектировать такие технологии становится сложнее.

Вложенные файлы: 1 файл

ModelirovanieKonspekt2009.doc

— 786.00 Кб (Скачать файл)


 

 

 

у = b0 + b1x + b2x2 + … + bnxn – если влияет 1 вход.

 

К сожалению, эмпирические модели имеют существенный недостаток. Коэффициенты, входящие в полином, не обладают каким-либо физико-химическим смыслом. Их величина и знак в лучшем случае позволяют судить о направлении и силе влияния того или иного входа на выход, но не дают информацию о причинах этого влияния. Это ограничивает применение эмпирических моделей. К тому же эмпирические модели обладают нулевой прогностической мощностью: они могут быть использованы только тогда, когда изменение x на входе системы находится в пределах исследованного диапазона.

 

При использовании структурного подхода необходимо знать внутреннюю структуру, её элементы и связи. Модель объекта создается на основе описания всех элементов и связей. Такое описание использует фундаментальные законы: закон сохранения вещества, закон сохранения энергии, закон эквивалентов, термодинамические законы и др. Для каждого элемента системы записываются материальный и тепловой балансы, которые затем объединяются в общее описание моделируемого объекта.

 

Независимо от того, на основе какого подхода создана модель, необходима оценка ее качества. На этом этапе необходим эксперимент с участием объекта моделирования. Идея состоит в том, что одинаковые значения входных величин задаются на соответствующих входах объекта и модели, как показано на рисунке. Состояние выхода объекта у измеряется экспериментально, величина на выходе модели равна y^. Используя полученную модель, проводят расчет выхода и получают предсказанное значение y^. Для каждого состояния входа и выхода можно вычислить отклонение у-у^. Если повторить эксперимент многократно, изменяя состояния входа и фиксируя состояния выхода, возвести в квадрат и просуммировать все квадраты отклонений, получим их сумму.

Критерием качества модели может быть (и чаще всего является) минимум суммы квадратов отклонения выходной величины, наблюдаемой на объекте и выходной величины, предсказанной с помощью модели. Чем меньше сумма квадратов отклонений, тем лучше модель воспроизводит моделируемый объект.


→ min – сумма квадратов отклонений должна

быть минимальной.

 

 

 

Алгоритм создания модели

 

Выбор метода создания модели зависит от свойств моделируемого объекта. В целом алгоритм создания модели иллюстрирует следующий рисунок.

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Проблемная ситуация возникает, как правило, когда изменяется внешние условия функционирования технологического объекта. Это означает изменение либо на входе, либо на выходе (например, изменение состава перерабатываемого сырья, повышение требований к качеству готовой продукции). Изменившиеся условия требуют адекватных изменений в технологическом объекте. Необходимо ответить на вопрос о том какие изменения в работе технологического объекта необходимы для достижения поставленной технологической цели при изменившихся условиях.

Постановка цели – определение цели создания модели.

Цели создания модели могут быть различными:

    • уточнение закономерностей, управляющих технологическим процессом;
    • модель создаётся, как инструмент для прогнозирования поведения объекта;
    • для поиска оптимальных условий работы технологических объектов.
    • для прямого оптимального управления технологическим процессом (в результате поиска оптимальных условий найденные оптимальные условия используются для управления технологическим процессом).

Формулировка критериев. Необходимо оценить критерии для оценки качества модели.

Содержательный анализ и выбор типа модели. Применяя методы системного подхода необходимо определить границы моделируемой системы, выделить ее из внешней среды и определить ее входы и выходы. На следующем этапе системного анализа выявляется внутренняя структура объекта, определяются его элементы и связи этих элементов, образующие структуру моделируемого объекта. На этом этапе становится понятно, к какому классу в соответствии со своими свойствами принадлежит моделируемый объект. Завершение содержательного анализа является выбор метода построения модели. Здесь возможны три дальнейших направления.

Аналитический метод или структурный подход. Используется для детерминированных систем с известной нам структурой внутренних связей.

Экспериментальный метод или эмпирический подход применяется для стохастических систем, подверженных действию возмущений, которыми нельзя пренебречь. Характер и величина возмущений при этом нам неизвестны, и учесть их действие аналитическим методом невозможно. Экспериментальный подход также является единственным выбором для систем, внутренняя структура которых нам недостаточно известна.

Имитационный метод используется для некоторых классов систем, например дискретно-непрерывных систем массового обслуживания.

После выбора метода построения модели содержание дальнейших шагов определяется выбранным методом.

Составление формализованного описания. На этом этапе, используя установленную структуру связей объекта и, применяя фундаментальные законы, создают математическое описание моделируемого объекта. Таким образом, модель в этом случае представляет собой алгоритм вычислений, уравнение или систему уравнений различного вида. Выполняя расчёты по этому алгоритму, решая системы уравнений, по заданным начальным условиям, можно рассчитать состояние выхода объекта. Наиболее популярными формами описания для металлургических процессов и объектов является материальный и тепловой баланс. Уравнения материального и теплового балансов могут быть записаны в дифференциальной или интегральной форме.

Планирование эксперимента. На этом этапе выбирается количество опытов, условия каждого опыта, т.е. сочетание факторов на входе системы в каждом проводимом опыте.

Выполнение эксперимента – выполнение запланированных опытов. В частности, для системы с тремя входами х1,х2,х3 и выходом у при постановке полного факторного эксперимента потребуется провести количество опытов 23=8. В этих опытах сочетания величин факторов на входе не повторяются. Величины на входах будем задавать на двух уровнях, т.н. верхнем и нижнем, изменяя их в пределах выбранного диапазона. Например, температура в технологическом объекте может быть в пределах 1100-1300 оС. Для оценки влияния температуры на процесс будем проводить опыты либо при нижнем, либо при верхнем значении температуры из этого диапазона. Обозначим верхний уровень знаком плюс, а нижний уровень знаком минус. Тогда матрица планирования эксперимента будет соответствовать ниже приведенной таблице. Для ее построения выделим три столбца, соответствующие факторам на входе и столбец для выходной величины, которую обычно именуют откликом. В столбцах факторов будем чередовать значения на верхнем и нижнем уровнях, причем в каждом правом столбце будем чередовать значения вдвое реже по сравнению с левым. В результате получаем матрицу эксперимента с неповторяющимися значениями факторов.

Для исключения влияния возмущений и случайных ошибок (связанных, например, с погрешностями измерения отклика) опыты проводят в случайной последовательности, например, первым проводят опыт, условия которого соответствуют третьей строке матрицы, вторым по порядку проводят опыт с условиями, соответствующими восьмой строке и т.д. Каждый раз измеряют значение выходной величины (отклика) и записывают результат в соответствующую строку матрицы, как показано в таблице.

Обработка результатов опыта подробно изложена в литературе и проводится в соответствии с известным алгоритмом. В результате такой обработки модель является полиномом первого порядка, содержащим свободный член и слагаемые, в которых присутствует коэффициент и значение фактора в первой степени.

Очень важно, что при таком планировании эксперимента матрица планирования обладает свойством ортогональности, а это позволяет выделить влияние каждого фактора на отклик отдельно от остальных  факторов. Таким образом, величины коэффициентов в уравнении показывают направление и силу влияния каждого фактора на отклик. Если коэффициент при данном факторе имеет положительный знак и большую величину, то увеличение этого фактор а способствует увеличению отклика. Как в любой эмпирической модели, величины коэффициентов b0, b1, b2, b3  показывают степень проявления данных факторов, но они не имеют явного физико-химического смысла, т.е. не объясняют, почему какие-то факторы оказывают большее действие на отклик по сравнению с другими.

 

х1

х2

х3

 

+

+

+

у4

-

+

+

у5

+

-

+

у1

-

-

+

у8

+

+

-

у3

-

+

-

у7

+

-

-

у6

-

-

-

у2





 

 

 

у = b0 + b1x1+ b2x2 + b3x3

 

 

 

 

Имитационное моделирование применяется для создания моделей дискретных или дискретно-непрерывных систем. Такие системы плохо описываются аналитически и затруднительно изучаются экспериментально. Модель создаётся как моделирующий алгоритм, воспроизводящий работу моделируемого объекта.

 

 

Структурный подход для построения математических моделей

 

При использовании структурного подхода, технологические объекты могут быть описаны на одном из следующих пяти уровней:

1.Молекулярный.

Металлургические процессы и объекты на этом уровне описываются как совокупность физико-химических явлений, в частности как совокупность химических реакций.

Например, конвертирование медного штейна в первом периоде на молекулярном уровне может быть описано основной химической реакцией окисления сульфида железа, входящего в состав штейна:

 

FeSж + O2г↑ + SiO2тв → 2FeO·SiO2ж + SO2г↑.

 

Исходными веществами-участниками этой реакции являются сульфид железа, кислород подаваемого дутья и кремнезем флюса. Продуктами реакции выступают фаялит (основной компонент шлака) и диоксид серы, удаляющийся в газовую фазу.

На молекулярном уровне описание объекта сводится к описанию стехиометрических соотношений масс исходных веществ и продуктов, равновесия и кинетики основных химических реакций.

2.Уровень малого объёма.

Пузырёк, капля, твердая частица – элементы малого объёма.


 

 

 

 

При описании конвертирования на уровне малого объема следует учесть дополнительно, что реакция первого периода конвертирования является гетерогенной, происходит на поверхности элемента малого объема, каковым в данном случае является пузырек газа, всплывающий в расплаве. Первоначально пузырек образуется при распаде струи подаваемого в расплав дутья и содержит внутри кислород и азот. Окисление сульфида железа происходит на его поверхности и сопровождается переносом вещества из объема расплава и газового пузырька к этой поверхности. Образующийся диоксид серы отводится внутрь пузырька, а 2FeOSiO2- в объем расплава. Это показано на рисунке. Для осуществления этой реакции отведено ограниченное время, поскольку пузырек всплывает в объеме расплава. Это время определяется скоростью движения пузырька и толщиной слоя расплава.

3.Уровень рабочей зоны аппарата. В дополнение к описанию предыдущего уровня необходимо учесть, что пузырек в расплаве не один. Одновременно в рабочей зоне присутствуют элементы малого объема в большом количестве. Рабочая зона характеризуется суммарной площадью поверхностей малых объёмов. К тому же, пузырьки имеют разные размеры, и необходимо учесть распределение размеров пузырьков и их средний размер суммарную поверхность.

4.Уровень технологического аппарата в целом. На этом уровне следует учесть, что помимо рабочей зоны аппарат имеет также и другие части, например устройства загрузки сырья и отвода продуктов, функционирование которых существенным образом сказывается на результатах работы всего моделируемого объекта. Так, скорость загрузки компонентов сырья или подачи дутья может лимитировать производительность технологического аппарата, хотя собственно физико-химические превращения осуществляются достаточно быстро.

5.Уровень технологической схемы. Моделируемый объект описывается на этом уровне как совокупность технологических операций, осуществляющихся последовательно. В технологических схемах существует большое количество оборотов, когда полученные полупродукты возвращаются на предыдущие технологические операции. На уровне технологической схемы каждая операция или технологический аппарат является объектом с сосредоточенными параметрами.

Информация о работе Лекции по «Моделирование процессов и объектов в металлургии»