Математическое представление информационных процессов управления на предприятии

Автор работы: Пользователь скрыл имя, 09 Ноября 2014 в 14:27, курсовая работа

Краткое описание

Целью данной курсовой работы является рассмотрение сущности и содержания процесса управления, а также применения математических моделей, математического программирования, для реализации успешного управления на предприятии.
Для достижения обозначенной цели были поставлены следующие задачи:
Рассмотреть понятие и сущность управленческой информации.
Проанализировать содержательные аспекты процесса управления, его этапы, функции и свойства.
Рассмотреть сущность линейного программирования для решения задач управления.

Содержание

Введение…………………………………………………………………………...3
1. Информационные процессы управления на предприятии….…………….…5
1.1 Понятие и сущность управленческой информации………...……..………..5
1.2 Содержательные аспекты процесса управления, его этапы, функции и свойства…………………………………………………………..……….……...11
2. Математическое моделирование информационных процессов.…….……..18
2.1 Линейное программирование……………….……………………..………..18
2.2 Основные понятия линейной алгебры, применяемые в теории математического программирования.………………………………………….23
3. Использование экономико - математических методов в решении типичных задач предприятия.………………………………………………………..……..32
3.1 Задачи управления запасами и распределения ресурсов….……..………..34
3.2 Задачи оптимальное распределение инвестиций и выбор оптимального маршрута перевозки грузов………….………………………………………….40
Заключение…………………………………………………………….…………46
Список используемых источников ……..……………………………......….…47

Вложенные файлы: 1 файл

Курсовой проект_22.12.13.doc

— 682.50 Кб (Скачать файл)

Многие свойства задач линейного программирования можно интерпретировать также как свойства многогранников и таким образом геометрически формулировать и доказывать их.

Математическая формулировка задачи линейного программирования

Нужно максимизировать при условиях при i = 0, 1, 2, . . . , m .

Иногда на xi также накладывается некоторый набор ограничений в виде равенств, но от них можно избавиться, последовательно выражая одну переменную через другие и подставляя ее во всех остальных равенствах и неравенствах (а также в функции f).

Такую задачу называют "основной" или "стандартной" в линейном программировании.

Дана линейная функция

Z=С1х1+С2х2+...+СNxN (1.1)

и система линейных ограничений

a11x1 + a22x2 + ... + a1NХN = b1

a21x1 + a22x2 + ... + a2NХN = b2

. . . . . . . . . . . . . . .

ai1x1 + ai2x2 + ... + aiNХN = bi (1.2) . . . . . . . . . . . . . . .

aM1x1 + aM2x2 + ... + aMNХN = bM

xj 0 (j = 1, 2, ... ,n) (1.3) линейное программирование

где аij, bj и Сj - заданные постоянные величины.

Найти такие неотрицательные значения х1, х2, ..., хn, которые удовлетворяют системе ограничений (1.2) и доставляют линейной функции (1.1) минимальное значение.

Общая задача имеет несколько форм записи.

Векторная форма записи. Минимизировать линейную функцию Z = СХ при ограничениях А1х1 + А2x2 + ... + АNxN = Ао, X0 (1.4)

где С = (с1, с2, ..., сN); Х = (х1, х2, ..., хN); СХ - скалярное произведение; векторы A1 = A2 = ,..., AN состоят соответственно из коэффициентов при неизвестных и свободных членах.

Матричная форма записи. Минимизировать линейную функцию, Z = СХ при ограничениях АХ = А0Х0, где С = (с1, с2, ..., сN) - матрица-cтрока; А = (аij) - матрица системы; Х =(xij)- матрица-столбец, А0 = (аi) матрица-столбец

Запись с помощью знаков суммирования. Минимизировать линейную функцию Z = Сjхj при ограничениях

0пределение 1. Планом или  допустимым решением задачи линейного  программирования называется Х = (х1, х2, ..., хN), удовлетворяющий условиям (1.2) и (1.3).

0пределение 2. План Х = (х1, х2, ..., хN) называется опорным, если векторы А (i = 1, 2, ..., N), входящие в разложение (1.4) с положительными коэффициентами х , являются линейно независимыми[24, с. 99].

 

2.2 Основные понятия линейной алгебры, применяемые в теории математического программирования

 

Кратко напомним некоторые фундаментальные определения и теоремы линейной алгебры и выпуклого анализа, которые широко применяются при решении проблем как линейного, так и нелинейного программирования. Фундаментальным понятием линейной алгебры является линейное (вещественное) пространство. Под ним подразумевается множество некоторых элементов (именуемых векторами или точками), для которых заданы операции сложения и умножения на вещественное число (скаляр), причем элементы, являющиеся результатом выполнения операций, также в соответствии с определением должны принадлежать исходному пространству. Частными случаями линейных пространств являются вещественная прямая, плоскость, геометрическое трехмерное пространство.

Вектор l1a1 + l2a2 + …+ lmam называется линейной комбинацией векторов а1 а2,..., аm с коэффициентами l1, l2, lm,

Система векторов линейного пространства а1 а2,..., аm называется линейно зависимой, если существуют такие числа l1, l2, lm не равные одновременно нулю, что их линейная комбинация l1a1 + l2a2 + …+ lmam равняется нулевому вектору (вектору, все компоненты которого равны нулю). В противном случае систему а1, а2,..., аm называют линейно независимой, т. е. линейная комбинация данных векторов может быть равна нулевому вектору только при нулевых коэффициентах l1, l2, …, lm

Максимально возможное количество векторов, которые могут образовывать линейно независимую систему в данном линейном пространстве, называют размерностью пространства, а любую систему линейно независимых векторов в количестве, равном размерности, - базисом пространства.

Линейное пространство обычно обозначают как Rn, где n - его размерность.

Любое подмножество данного линейного пространства, которое само обладает свойствами линейного пространства, называется линейным подпространством. Множество Н, получаемое сдвигом некоторого линейного подпространства L Є Rn на вектор a Є Rn: H=L+a, называется аффинным множеством (пространством). Если фундаментальным свойством любого линейного пространства или подпространства является принадлежность ему нулевого вектора, то для аффинного множества это не всегда так. На плоскости примером подпространства является прямая, проходящая через начало координат, а аффинного множества - любая прямая на плоскости. Характеристическим свойством аффинного множества является принадлежность ему любой прямой, соединяющей две любые его точки. Размерность аффинного множества совпадает с размерностью того линейного подпространства, сдвигом которого оно получено.

Если рассматривается некоторое линейное пространство Rn, то принадлежащие ему аффинные множества размерности 1 называются прямыми, а размерности (n-1) - гиперплоскостями. Так, обычная плоскость является гиперплоскостью для трехмерного геометрического пространства R3, а прямая - гиперплоскостью для плоскости R2. Всякая гиперплоскость делит линейное пространство на два полупространства.

Множество V векторов (точек) линейного пространства Rn называется выпуклым, если оно содержит отрезок прямой, соединяющей две его любые точки, или, другими словами, из того, что a ЄV и bЄV , следует, что х = (1- l) х а+ l х b Є V , где 0 ? l ? 1.

Линейная комбинация векторов а1, а2... аm называется выпуклой, если li ?0, i Є1:m и

Множество, содержащее все возможные выпуклые комбинации точек некоторого множества М, называют выпуклой оболочкой данного множества. Можно показать, что выпуклая оболочка множества М является наименьшим выпуклым множеством, содержащим М.

Выпуклая оболочка конечного множества точек называется выпуклым многогранником, а непустое пересечение конечного числа замкнутых полупространств - многогранным выпуклым множеством. В отличие от выпуклого многогранника последнее может быть неограниченным.

Точка v выпуклого множества V называется его угловой (крайней) точкой, если она не является внутренней точкой ни для какого отрезка, концы которого принадлежат множеству V. Угловые точки выпуклого многогранника являются его вершинами, а сам он -- выпуклой оболочкой своих вершин. Множество К называется конусом с вершиной в точке x0, если x0 Є К , и из того, что некоторая точка х принадлежит К ( х Є К ), следует, что в К содержится и луч, начинающийся в х0 и проходящий через х, или выпуклая оболочка конечного множества лучей, исходящих из одной точки, называется многогранным выпуклым конусом с вершиной в данной точке.

Для понимания полезно знать и представлять себе геометрическую интерпретацию задач линейного программирования, которую можно дать для случаев n = 2 и n = 3.

Наиболее наглядна эта интерпретация для случая n = 2, т.е. для случая двух переменных x1 и x2. Пусть нам задана задача линейного программирования в стандартной форме.

Возьмём на плоскости декартову систему координат и каждой паре чисел (x1,x2)поставим в соответствие точку на этой плоскости. Обратим прежде всего внимание на ограничения x1 ?0 и x2 ? 0. Они из всей плоскости вырезают лишь её первую четверть (см. рис. 1). Рассмотрим теперь, какие области соответствуют неравенствам вида a1 x1 + a2 x2 ? b. Сначала рассмотрим область, соответствующую равенству a1 x1 + a2 x2 = b. Как Вы, конечно, знаете, это прямая линия. Строить её проще всего по двум точкам. Пусть b ? 0. Если взять x1 = 0, то получится x2 = b/a2. Если взять x2 = 0, то получится x1 = b/a1. Таким образом, на прямой лежат две точки (0, b/a2) и (b/a1, 0). Дальше через эти две точки можно по линейке провести прямую линию. Если же b=0, то на прямой лежит точка (0,0). Чтобы найти другую точку, можно взять любое отличное от нуля значение x1 и вычислить соответствующее ему значение x2.

Эта построенная прямая разбивает всю плоскость на две полуплоскости. В одной её части a1x1 + a2x2 < b, а в другой наоборот a1x1 + a2x2 > b. Узнать, в какой полуплоскости, проще всего посмотрев, какому неравенству удовлетворяет какая-то точка плоскости, например, начало координат, т.е. точка (0,0).

Геометрическая интерпретация задачи линейного программирования.

Рассмотрим задачу ЛП в стандартной форме записи:

max f(X) = с1х1 + с2х2 + ... + спхп (*)

при ограничениях:

а11х1 + а12х2 + … + а1nхn ? b1

а21х1 + а22х2 + … + а2nхn ? b2

……………………………..

аm1х1 + аm2х2 + … + аmnхn ? bm

хj ? 0, j = 1, 2, …, n.

Рассмотрим эту задачу на плоскости, т.е. при п = 2. Пусть система неравенств (**), (***) совместна (имеет хотя бы одно решение):

а11х1 + а12х2 ? b1

а21х1 + а22х2 ? b2

…………..

аm1х1 + аm2х2 ? bm

x1 ? 0; х2 ? 0.

Каждое неравенство этой системы геометрически определяет полуплоскость с граничной прямой аi1х1 + аi2х2 ? bi i = 1, m. Условия неотрицательности определяют полуплоскости соответственно с граничными прямыми x1 = 0; х2 = 0.. Система совместна, поэтому полуплоскости, как выпуклые множества, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты каждой из которых составляют решение данной системы. Совокупность этих точек называют многоугольником решений. Это может быть точка, отрезок, луч, замкнутый многоугольник, неограниченная многоугольная область.

Если в системе ограничений (**) - (***) n = 3, то каждое неравенство геометрически представляет полупространство трехмерного пространства, граничная плоскость которого аi1х1 + аi2х2 + аi3х1 ? bi, а условия неотрицательности - полупространства с граничными плоскостями соответственно xi = 0 (i = 1, 2, 3). Если система ограничений совместна, то эти полупространства, как выпуклые множества, пересекаясь, образуют в трехмерном пространстве общую часть, которая называется многогранником решений.

Пусть в системе (**) - (***) п > 3, тогда каждое неравенство определяет полупространство n-мерного пространства с граничной гиперплоскостью аi1х1 + аi2х2 + … + аinхn ? bi i = 1, т , а условия неотрицательности -полупространства с граничными гиперплоскостями xj = 0, j = 1, n.

Таким образом, геометрически задача линейного программирования представляет собой отыскание такой точки многогранника решений, координаты которой доставляют линейной функции минимальное значение, причем допустимыми решениями служат все точки многогранника решений.

Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задач трехмерного пространства, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трех изобразить графически вообще невозможно.

Симплекс метод - метод линейного программирования, который реализует рациональный перебор базисных допустимых решений, в виде конечного итеративного процесса, необходимо улучшающего значение целевой функции на каждом шаге.

Применение симплекс-метода для задачи линейного программирования предполагает предварительное приведение ее формальной постановки к канонической форме с n неотрицательными переменными: (X1, ..., Xn), где требуется минимизация линейной целевой функции при m линейных ограничениях типа равенств. Среди переменных задачи выбирается начальный базис из m переменных, для определенности (X1, ..., Xm), которые должны иметь неотрицательные значения, когда остальные (n-m) свободные переменные равны 0. Целевая функция и ограничения равенства преобразуются к диагональной форме относительно базисных переменных, переменных, где каждая базисная переменная входит только в одно уравнение с коэффициентом [10, с. 196].

Симплекс-таблица

 
 

1

X1

X2

...

Xm

Xm+1

...

Xn

 

X0

A0,0

0

0

...

0

A0,m+1

...

A0,n

 

X1

A1,0

1

0

...

0

A1,m+1

...

A1,n

 

X2

A2,0

0

1

...

0

A2,m+1

...

A2,n

 

...

...

...

...

...

...

...

...

...

 

Xm

Am,0

0

0

...

1

Am,m+1

...

Am,n

 
                   

Информация о работе Математическое представление информационных процессов управления на предприятии