Выбросы загрязняющих веществ в атмосферу на примере ОАО «МГПЗ»

Автор работы: Пользователь скрыл имя, 07 Февраля 2013 в 21:56, курсовая работа

Краткое описание

Современная интенсификация темпов развития сырьевого комплекса российской экономики сопровождается неэффективным использованием природно-ресурсного потенциала, увеличением поступления в окружающую среду веществ промышленного происхождения, что приводит к разрушению экосистем. В отдельных случаях объем таких поступлений уже превысил естественный, обусловленный биогеохимическим круговоротом. В потоках этих веществ появились и появляются новые, неизвестные биоте химические соединения, последствия, внедрения которых для биосферы и человека неизвестны.

Вложенные файлы: 1 файл

курсовая по проектированию.doc

— 608.00 Кб (Скачать файл)

Жидкие аэрозоли (туманы) могут быть скоагулированы посредствам  изменения параметров состояния (охлаждения и повышения давления) с целью осаждения в последующем с использованием как правило мокрых способов улавливания в мокрых сребберах, пористых и электрических фильтрах, абсорберах.

Мокрые способы очистки  твердых и жидких аэрозолей имеют  существенный недостаток – необходимость отделения уловленного загрязнителя от улавливающей жидкости.  По этой причине мокрые способы следует применять только при отсутствии других методов очистки, отдавая предпочтение способам с минимальным расходом жидкости.

Не возможно указать  точной границы применимости тех или иных физических и химических процессов в каком-либо из принципов обезвреживания выбросов или строго соотнести их с определенными агрегатными состояниями загрязнителей. Так, процессы гравитационного и инерционного осаждения дисперсной части выбросов могут быть использованы и для отделения газов с высокой плотностью, например, галогенидов тяжелых металлов. В то же время процесс охлаждения и конденсации, широко используемый для газоразделения, применяются и для укрупнения субмикронных конденсационных аэрозолей («вымораживание» полициклических ароматических углеводов, коагуляция туманов).

Проблемы, возникающие  при разработке и проектировании очистных систем, тесно связаны и  со всеобщими законами (цикличность, безотходность и др.), и с конкретными закономерностями природных технологий. Так, например, взвешенные частицы могут оседать под влиянием гравитационных, инерционных, когезионных, электростатических и других сил. Вклад каждой из них в результирующее действие зависит от большого числа факторов, связанных с параметрами частиц, среды, конструктивными особенностями аппаратов. Возможности математического аппарата недостаточны для всестороннего количественного учета характеристики реальных процессов. Многие из факторов взаимосвязаны, а результирующие зависимости имеют настолько сложный характер, что не всегда удается найти логическое объяснение полученным результатам. Поэтому даже в расчетах простейших очистных устройств – пылеосадительных камер и жалюзийных решеток, приходится основываться на экспериментальные данные и производственный опыт.

Наиболее сложны для  очистки выбросы, загрязнители которых  представляют многофазную систему. Поскольку большинство современных  очистных аппаратов не приспособлено  для одновременного обезвреживания дисперсных и гомогенных загрязнителей,  то в общем случае подобные выбросы должны пройти четыре стадии обработки: предварительную и тонкую очистку от аэрозоля и затем предварительное и окончательное обезвреживание газообразного загрязнителя. В частности, если газообразный загрязнитель хорошо растворяется в воде, может быть организована предварительная обработка выбросов мокрыми способами, которая позволит понизить концентрации как дисперсных, так и гомогенных загрязнителей.

Если твердые или  жидкие аэрозоли по элементному составу не содержат других элементов кроме углерода, водорода и кислорода (пыль растительного происхождения, шерстяные волокна, туманы минеральных масел и др.), то они могут быть обезврежены в одну стадию – непосредственным сжиганием в топках котлов и печей.

 

 

 

 

 

 

 

 

 

6. Способы очистки газовых выбросов

 Дисперсные и газовые  загрязнители не редко являются  результатом одних производственных  процессов¸ вместе перемещаются  в коммуникациях тесно взаимодействуют  в очистительных аппаратах и  атмосфере, совместно наносят ущерб окружающей среде и человеку. Поэтому необходимо учитывать весь комплекс присутствующих в технологическом выбросе загрязнителей. Нельзя принимать за средство очистки запыленных газов пылеосадительные устройства, выбрасывающие в атмосферу вредные газообразные вещества. Недопустимы и такие средства, в которых обезвреживание исходных газовых загрязнителей сопровождается образованием и выбросом ядовитых туманов и дымов других веществ. [11]

Судя по составу реальных отбросных газов и масштабам загрязнения окружающей среды, разрабатывать устройства пылеочистки без учета газообразных загрязнителей возможно только для вентиляционных выбросов механических цехов. Выбросы практически всех других производств требуют удаления и дисперсных и газовых загрязнителей, причем иногда это можно сделать в одном очистительном устройстве.

Для обезвреживания выбросов по принципу удаления токсичных примесей наряду с физическими удачно используются и химические процессы. Посредствам  последних можно изменять в широких пределах физические свойства примесей (например, превращая исходные газообразные загрязнители в соединения с высокой температурой кипения) с целью облегчения их дальнейшего улавливания.

Для реализации второго  принципа обезвреживания превращения  загрязнителей в безвредные существа необходимо сочетание химических и физических процессов. С этой целью чаще всего используются процессы технической диструкции и термического окисления. Они применимы для загрязнителей всех агрегатных состояний, но ограничены составом обрабатываемого вещества. Термической обработке с целью обезвреживания могут быть подвергнуты лишь вещества, молекулы которых состоят из атомов углерода, водорода и кислорода. В противном случае установки термообезвреживания переходят в разряд источников загрязнения атмосферы, и нередко – крайне опасных.

Классификация средств  обезвреживания газообразных загрязнителей  заключается в разделении по применяемым  процессам. В основном для газоочистки  используются средства химической технологии. Поэтому классификация средств обезвреживания выбросов практически совпадает с классификацией процессов  и аппаратов химической промышленности, вырабатывающих вредные выбросы как отходы основного производства.

Для обезвреживания отходящих  газов от газо- и парообразных токсичных веществ применяют абсорбционные, адсорбционные, каталитические, термические и конденсационные методы. Абсорбционные методы основаны на поглощении газов или паров жидкими поглотителями. Адсорбционные методы основаны на поглощении примесей твердыми пористыми телами. Каталитические методы очистки основаны на химических превращениях токсичных примесей в не токсичные на поверхности твердых катализаторов. Термические методы основаны на сжигании горючих вредных примесей. В основе конденсационных методов лежит явление уменьшения давления насыщенного пара растворителя при понижении температуры.

С целью улавливания  газообразных примесей применяют процессы конденсации, сорбции (абсорбции и  адсорбции), хемосорбции, а превращают загрязнители в безвредные соединения посредством термохимических (термическая деструкция, термическое и термокаталитическое окисление) и химических процессов. Соответствующие аппараты называются конденсаторами, абсорберами, адсорберами, установками (печами) термодеструкции (пиролиза, крекинга, риформинга), термоокисления (дожигания), термокаталитическими установками (печами, реакторами), химическими реакторами.

Для очистки выбросов от газообразных загрязнителей чаще всего применяют методы конденсации, абсорбции, адсорбции и термообезвреживания. Если температура кипения загрязнителей при атмосферном давлении невысока (ориентировочно ниже 100°С), то глубокая очистка посредством охлаждения и повышения давления потребует чрезмерно высоких расходов энергии, и конденсационную очистку можно использовать только как предварительную. Абсорбционной обработке могут быть подвергнуты выбросы, загрязнители которых хорошо растворяются в абсорбенте. Если при этом концентрация загрязнителя в выбросах превышает (1-2)*10-3 кг/м3, то технически возможно достичь степени очистки более 90%.

В качестве абсорбента чаще всего используются вода или органические жидкости, кипящие при высокой  температуре. В аппаратах с органическими  абсорбентами можно обрабатывать выбросы, не содержащие твердых примесей, которые  практически не поддаются отделению от поглотительной жидкости. Для некоторых газовых загрязнителей можно успешно применить химическую абсорбцию (хемосорбцию) - процесс, в котором подлежащий удалению загрязнитель вступает в химическую реакцию с поглотителем и образует нейтральное или легко удаляемое из процесса соединение. Такие процессы специфичны и разрабатываются конкретно для каждого вида выбросов и набора загрязнителей.

Самым универсальным  средством очистки выбросов от газообразных загрязнителей на настоящее время остается адсорбция, а наиболее универсальным адсорбентом – активированный уголь. Посредством адсорбции принципиально возможно извлечь из выбросов любой загрязнитель в широком диапазоне концентраций. Однако высококонцентрированные загрязнители (ориентировочно с концентрациями более 5*103 кг/м3) удобнее подвергать предварительной обработке (конденсацией, абсорбцией) для снижения их концентраций. Необходима также предварительная обработка (осушка) сильно увлажненных газов.

К сожалению, часто в  качестве универсального средства очистки выбросов рассматривается термообезвреживание, каковым оно на самом деле не является. В термоокислительных процессах необратимо теряется качество воздуха, использованного для горения, а продукты окисления, выбрасываемые в атмосферу, содержат некоторое количество новых токсичных веществ – оксида углерода СО и оксидов азота NO . Вообще область применения термообезвреживания ограничена только соединениями, в молекулах которых нет других элементов, кроме углерода С, водорода Н и кислорода О. Получить нетоксичные продукты реакции любых других соединений с кислородом принципиально невозможно. Термоокислительная обработка выбросов, загрязненных углеводородами или КПУ (кислородными производными углеводородов), ограничивается также по затратам топлива на создание требуемых температур в зоне реакции (400-550°С для термокаталитической обработки и 800-1200°С для непосредственного термоокисления, т.е. сжигания в пламени). Чтобы обеспечить максимальное окисление исходных загрязнителей до относительно нейтральных СО2 и Н2О, процесс термообезвреживания должен быть полностью контролируемым. Поэтому он должен осуществляться в топочных устройствах, соответствующих по параметрам расчетным условиям, обеспечивающим полное окисление загрязнителей. По этой же причине сжигание органических соединений в открытом пламени не может быть отнесено к способу термического обезвреживания. Канцерогенная копоть факелов химических предприятий, с легкостью преодолевающая санитарно-защитную зону, показывает, что это серьезный источник загрязнения окружающей среды, а не средство защиты атмосферы. [12]

К перспективным способам обработки больших объемов выбросов с невысокими концентрациями органических газообразных загрязнителей можно  отнести схему термообезвреживания  с предварительным концентрированием загрязнителей посредством адсорбции. Такая схема может быть технически и экономически приемлемой при начальной концентрации загрязнителя выше 50 мг/м3. Теплоту, выделяющуюся при сгорании загрязнителей, можно достаточно легко утилизировать. Если концентрация горючих загрязнителей может быть доведена ориентировочно до (5-6)*10-3 кг/м3, то термообработку можно организовать с незначительным добавлением топлива, а при более высоких концентрациях можно ожидать и экономической эффективности работы установки.

Представляются перспективными способы обработки отбросных  газов, основанные на переводе парообразных загрязнителей в конденсированное состояние и последующей фильтрации образовавшегося аэрозоля. Если загрязнители имеют невысокое давление насыщенных паров, то может быть приемлемой конденсация посредством повышения давления и понижения температуры выбросов. Пары загрязнителей легкокипящих веществ могут быть подвергнуты обработке химическими реагентами таким образом, чтобы продукты реакции имели низкие давления насыщенных паров. При этом способы химической обработки необходимо подбирать так, чтобы была возможна утилизация улавливаемого продукта.

В практике газоочистки  применяют три основных способа  очистки выбросов в атмосферу  от вредных паров и газов: абсорбция жидкостями, адсорбция твердыми поглотителями, каталитические методы очистки.

Абсорбция — избирательное поглощение одного или нескольких компонентов из газовой смеси жидкими поглотителями.

Газовую среду, из которой  извлекают компонент, называют газом-носителем, жидкий поглотитель — абсорбентом, поглощаемый компонент — абсорбтивом.

Скорость абсорбции  зависит от ряда факторов, главным  образом, давления и температуры. С  ростом давления и температуры скорость абсорбции повышается.

Процесс, обратный абсорбции, называется десорбцией. Если изменяются условия, например, происходит понижение давления над жидкостью или снижается температура, процесс становится обратимым и происходит выделение газа из жидкости. Таким образом, может быть осуществлен циклический процесс абсорбции-десорбции. Это позволяет выделить поглощенный компонент. Сочетая абсорбцию с десорбцией, можно многократно использовать почти без потерь жидкий поглотитель (абсорбент) в замкнутом контуре аппаратов: абсорбер-десорбер-абсорбер (круговой процесс), выделяя поглощенный компонент в чистом виде.

Абсорбционную очистку  выбросов в атмосферу применяют  как для извлечения ценного компонента из газа, так и для санитарной очистки газа. Считают, что целесообразно  применять абсорбцию, если концентрация данного компонента в газовом потоке составляет свыше 1 %.

Абсорбция — наиболее распространенный процесс очистки  газовых смесей во многих отраслях, например, в химической промышленности. Абсорбцию широко применяют для  очистки выбросов от сероводорода, других сернистых соединений, паров соляной, серной кислот, цианистых соединений, органических веществ (фенола, формальдегида и др.).

Различают абсорбцию  физическую и химическую. При физической абсорбции молекулы абсорбента и  молекулы абсорбтива не вступают между собой в химическое взаимодействие. При химической абсорбции молекулы абсорбента вступают в химическую реакцию с молекулами абсорбтива, образуя новое химическое соединение.

Процесс абсорбции осуществляется в специальных аппаратах —  абсорберах. Для интенсификации процесса абсорбции необходимы аппараты с развитой поверхностью контакта абсорбента с газом-носителем.

Адсорбция — процесс избирательного поглощения одного или нескольких компонентов из газовой среды с помощью адсорбентов — твердых материалов с большой удельной поверхностью. Газовая среда, из которой происходит поглощение компонента, называется газом-носителем, твердое вещество, поглощающее компонент — адсорбентом, поглощаемое вещество — адсорбтивом, поглощенное вещество — адсорбатом. [13]

Информация о работе Выбросы загрязняющих веществ в атмосферу на примере ОАО «МГПЗ»