Химия и физика горючих ископаемых

Автор работы: Пользователь скрыл имя, 28 Ноября 2013 в 21:31, курс лекций

Краткое описание

C давніх давен пошук їжі і джерел енергії визначав діяльність людини. Деревина, вітер і вода довгий час були єдиними енергоносіями. З перетворенням енергії води й інших видів енергії в електричний струм почався бурхливий розвиток техніки. Дешева нафта забезпечила після 1945 року непередбачений переможний хід автомобіля. Однак зростання цін на енергоносії і різке збільшення чисельності населення Землі з'явилися застереженням про наявність границь росту енергоспоживання.

Содержание

ЧАСТИНА I. ЗАГАЛЬНІ ПИТАННЯ
1. Джерела енергії й органогенна сировина
2. Вуглець і вуглецеві матеріали
3. Види горючих копалин і їхня роль у народному господарстві
4. Умови залягання і способи видобутку горючих копалин
5. Головні родовища горючих копалин
ЧАСТИНА II. ТВЕРДІ горючі КОПАЛИНИ
6. Походження твердих горючих копалин
7. Торф
8. Класифікація ТГК
9. Петрографія вугілля
10. Технічний аналіз вугілля
1. Волога
2. Мінеральні компоненти і зольність вугілля
3. Вихід летких речовин
4. Сірка у вугіллі
11. Елементний склад ТГК
12. Фізичні властивості вугілля
1. Густина ТГК
2. Фізико-механічні властивості
3. Теплофізичні властивості
4. Електромагнітні властивості
13. Хімічна будова твердих горючих копалин
14. Гумінові кислоти, бітуми, гірський віск
15. Збагачення твердих пальних копалин
16. Брикетування вугілля
17. Термічна деструкція. Механізм перетворення вугілля
18. Піроліз ТГК
19. Коксування вугілля
20. Окиснення вугілля
21. Спалення горючих копалин
22. Газифікація вугілля
23. Гідрогенізація і розчинення вугілля
24. Енерготехнологічна переробка твердих горючих копалин
ЧАСТИНА III. РІДКЕ ПАЛИВО
25. Походження нафти і газу
26. Груповий хімічний склад нафт і нафтопродуктів
27. Характеристика нафт і нафтових фракцій
28. Способи переробки нафти
29. Термічний крекінг нафти
30. Каталітичні процеси переробки нафти
31. Нафтові палива й мастила
32. Очищення нафтопродуктів
ЧАСТИНА IV. ГАЗОПОДІБНЕ ПАЛИВО
33. Природні горючі гази
34. Зріджений газ
35. Гази вугільних родовищ
ПЕРЕЛІК ЛІТЕРАТУРИ

Вложенные файлы: 1 файл

ХІМІЯ І ФІЗИКА ГОРЮЧИХ КОПАЛИН.doc

— 1.16 Мб (Скачать файл)

пластичність - здатність зберігати  деформацію аж до межі текучості після  зняття навантаження;

твердість - здатність чинити опір пружним і пластичним деформаціям;

міцність - здатність чинити опір руйнуванню при дії напружень;

крихкість - здатність руйнуватися  без помітного поглинання енергії;

дробимість - властивість, що визначається сукупністю твердості, в'язкості і  тріщинуватості.

тривкість -- умовне поняття, яке символізує сукупність механічних властивостей і виявляється в різних технологічних процесах при видобутку і переробці вугілля;

Є невелика кількість робіт по визначенню пружних властивостей вугілля, однак  результати, отримані різними дослідниками при застосуванні статичних і динамічних методів, суттєво відрізняються. Наприклад, значення модуля Юнга, отримані статичним методом, менше на порядок, ніж значення, отримані динамічним методом.

Відношення констант пружності  для гомогенної пружної речовини, визначених статичним і динамічним методами, за законами термодинаміки повинне дорівнювати відношенню теплоємності при постійних тиску і об'ємі, а оскільки для твердих тіл воно приблизно дорівнює одиниці, то обидва методи повинні давати ідентичні результати. Різниця в значеннях констант пружності в цьому випадку може бути пояснена наявністю капілярних тріщин, які є в зразку вугілля, і завдяки яким вугілля має більшу деформаційну здатність, ніж слід би чекати за його істинною константою пружності, так що статична константа буде занижена. Для виключення помилок при вимірюваннях рекомендується провести їх при великих частотах і отриману при цьому динамічну константу приймати за істинну або визначати модуль пружності одних і тих же зразків різними методами.

Потрібно зазначити, що у всіх випадках спостерігається єдина закономірність зміни пружних властивостей в ряду вуглефікації. У молодого вугілля вона росте, досягаючи максимуму у неспекливого кам'яного вугілля, потім різко падає на стадії коксівного вугілля, і знов різко зростає у вугілля із вмістом вуглецю понад 90 %. Такий характер зміни пружних властивостей в ряді вуглефікації свідчить про наявність декількох етапів в зміні структури і надмолекулярної організації вугілля. Детально взаємозв'язок між пружністю, структурою і надмолекулярної організацією вугілля буде розглянуто нижче.

Зміна пластичності вугілля в ряді вуглефікації зворотно пропорціональна  зміні пружності. Крихкі речовини, до яких можна віднести вугілля, схильні  до пластичної деформації без руйнування при великому ізотропному тиску і анізотропних напруженнях.

Існує велика кількість методів  і показників, що характеризують твердість  вугілля, його опір деформаціям. Найбільший інтерес представляє вимірювання  мікротвердості визначенням твердості  малих поверхонь, що дуже істотно при дослідженні неоднорідного вугілля. Визначаючи мікротвердість методом вдавлювання, можна також отримати пластичні відбитки, уникаючи їх розтріскування. Для вимірювання мікротвердості рекомендований метод за ГОСТ 21206-75.

Результати досліджень за цим методом показали, що крихка речовина вітрена більш тверда, ніж крихкий і більш неоднорідний дюрен. Буре вугілля має найменшу мікротвердість, яка росте по мірі вуглефікації від 60 МПа у підмосковного вугілля до 166 МПа у блискучого челябінського вугілля. Серед кам'яного вугілля найменшу мікротвердість має довгополуменеве вугілля (140-180 МПа), у газового вугілля вона помітно росте. Мікротвердість вугілля марок Ж, К, ПС приблизно однакова, а при переході до пісного вугілля і антрацитів вона різко підвищується, складаючи в середньому у перевірених зразків антрацитів 900 МПа.

Мікротвердість вітриніту в  ряду від бурого вугілля до антрацитів зростає в 5 разів, причому найбільше  вона росте на стадії пісне вугілля-антрацит.

У мікрокомпонентів групи фюзиніта мікротвердість в ряду вуглефікації змінюється менше, але на одній стадії вуглефікації може змінюватися в межах від 300 до 800 МПа. Компоненти класу лейптиніту мають невелику мікротвердість, яка коливається від 130 до 240 МПа.

На кривій зміни мікротвердості в ряду углефікації є максимум при вмісті вуглецю 84 % і мінімум при вмісті вуглецю 90 %, тобто вони відповідають аналогічним перегинам на кривій зміни констант пружності. Антрацити із вмістом вуглецю біля 93 % володіють властивостями ідеальних пластиків.

Для підвищення точності і надійності при визначенні мікротвердості застосовується метод склерометрії вивчення ширини смуги деформації при дряпанні поверхні індентором, що переміщається. Переваги цього методу полягають у підвищенні точності і надійності при вимірюванні лінійних розмірів деформівної зони, а також можливість використання індентора з ромбічною основою як для вивчення мікротвердості, так і її анізотропії.

Міцність з практичної точки  зору є найбільш важливою фізико-механічною властивістю вугілля, так як вона характеризує руйнування при добуванні, транспортуванні, дробимість при технологічному подрібненні і пилеутворюючу здатність. Міцність визначається різними методами за результатами випробування вугілля в різних пристроях, що дроблять. За рубежем найбільш відомі "випробування на здатність до подріблення кульовим млином" і метод Хардгрове, які прийняті як стандартні. У цих методах застосовується млин для тонкого подрібнення з регульованою швидкістю обертання. Міцність мінімальна при вмісті вуглецю 89-90 %. Як вказувалося вище в цій же області вугілля має мінімальне значення мікротвердості.

При вивченні вугілля Донбасу встановлено, що міцність, визначена за методом  копра, змінюється з мінімумом в  зоні коксівного вугілля. При переході від вугілля, що спікається, до пісного і антрацитів міцність зростає майже в 13 разів. Коливання міцності ізометаморфного вугілля значні, що пояснюється впливом генетичних чинників. Так, у пісного вугілля і антрацитів велика механічна міцність відповідає маловідновленному вугіллю.

Дослідження міцності окремих петрографічних інгредієнтів показало, що найміцнішим  є напівматове щільне вугілля  дюренового типу. Менша міцність напівматового  зернистого вугілля пов'язана з  менш однорідною будовою. Значно менш міцним виявилося блискуче вугілля, складене вітреном і клареном, що пояснюється крихкістю його блискучих інгредієнтів.

При визначенні опору розтисканню  встановлено, що більш міцним є матове дюренове вугілля. Фюзен має найбільшу  крихкість, кларен і вітрен займають проміжне положення.

Крихкість визначається здатністю  твердих тіл руйнуватися без  застосування зовнішніх впливів. Мікрокрихкість вугілля визначається за величиною, зворотній глибині занурення  індикатора в зразок вугілля, при  якій не наступає крихке руйнування. Для  антрацитів показник мікрокрихкості змінюється від 0,5 до 1,05 мкм --1.

Таким чином, зміна механічних властивостей вугілля в ряді вуглефікації пов'язана  з їх структурними особливостями  і надмолекулярною організацією і може отримати наукове обґрунтування  при зіставленні з параметрами молекулярної структури і будови на різних рівнях.  

 

12.3 Теплофізичні властивості  

 

До показників, що характеризують теплофізичні властивості твердих  тіл, належать теплопровідність, теплоємність, термічне розширення. Ці властивості  вугілля досить детально вивчені.

Основні термічні коефіцієнти - теплопровідності, температуропровідості і теплоємності - пов'язані між собою рівнянням:  

 

 

де а - коефіцієнт температуропровідності, м2/с;

l- коефіцієнт теплопровідності, Дж/(с  К м);

с - теплоємність матеріалу, Дж/(кг К);

r - густина матеріалу, кг/м3.  

 

Вугілля і гірські породи за своїми тепловими властивостями наближаються до теплоізоляторів і являють собою неоднорідні тіла, що складаються з твердих інгредієнтів, рідких прошарків і повітряних чарунок. Коефіцієнт теплопровідності таких матеріалів є умовною величиною і іноді називається видимим коефіцієнтом теплопровідності.

Величина коефіцієнта теплопровідності вугілля визначається теплопровідністю власне вугільної речовини (l), її пористістю (Р), зольністю (А), вологістю (W) і температурою системи (Т).

Температурний коефіцієнт для вугілля  позитивний, а зростання l із збільшенням  температури відбувається або за лінійним, або при підвищених температурах, за квадратичним законом. Збільшення коефіцієнта теплопровідності вугілля і горючих сланців із зростанням температури пояснюється значною мірою сильним впливом променистого теплообміну (конвекції) між поверхнями пор палива через розділяючі їх газові чарунки.

Приймаючи, що в певних інтервалах температур існує лінійна залежність коефіцієнта теплопровідності, можна  записати 

 

 

де: , 1/град. 

 

Встановлено, що для вугілля різного  ступеня метаморфізму в інтервалі  температур від 20 до 100 0С існує лінійна залежність l від температури і b =0,002 1/град.

Можна прийняти наступне середнє значення температурного коефіцієнта теплопровідності для різних інтервалів температури:  

 

Інтервал температур, °С

0 --100

100 --300

300 --1000

0 --1000

Температурний коефіцієнт b, 1/град.

Для засипок

0,002

0,0003

0,0010

0,0009

Для ціликів

0,002

0,0003

0,0016

0,0014


 

 

Зростання коефіцієнту температуропровідості  вугілля в інтервалі температур 0-200 0С незначне, оскільки одночасно із збільшенням теплопровідності зростає і теплоємність вугілля. Збільшення коефіцієнта температуропровідності після 250-300 0С пояснюється одночасним впливом збільшення коефіцієнта теплопровідності, зменшенням теплоємності і густини внаслідок виділення летких.

Найменші значення теплопровідності і температуропровідності в ряді метаморфізму мають жирне і коксівне вугілля. Значення l і а збільшуються при переході до газового вугілля з одного боку, до пісного вугілля і антрацитів з іншого. Температуропровідність вугілля змінюється в ряді метаморфізму в значно меншій мірі, ніж теплопровідність. При нормальних температурах теплопровідність вугілля змінюється від 0,10 до 0,13 Дж/(м с град.), а температуропровідность від 1,0Ч10- 4 до 1,8Ч10-4 м2/с.

Теплопровідність вугілля підвищується із збільшенням виходу летких речовин і густини. Коефіцієнт теплопровідності вугілля різко збільшується з підвищенням вологості вугілля. У кам'яного вугілля при вологості 10 % він зростає в 2-2,5 рази, у бурого вугілля таке зростання l досягається при Wp=20-25 %.

Залежність теплопровідності від  пористості дуже складна. Нижньою межею  теплопровідності пористого матеріалу  є 0,02 Дж/(м*с* град.), що дорівнює теплопроводністі повітря. Чим більше загальний об'єм пор і чим менше їх розміри, тобто чим дрібніші пори, тим нижче повинен бути коефіцієнт теплопровідності при тій же насипній густини. Температуропровідність вугілля меншає із зростанням насипної ваги.

Теплопровідність вугільних ціликів  набагато вище за теплопровідність дробленого вугілля. Гранулометричний склад дробленого вугілля впливає на його теплопровідність переважно тому, що при зміні його міри дроблення одночасно змінюється насипна густина.

Оскільки теплопровідність мінеральних  компонентів вугілля значно вище за теплопровідність органічної маси, можна передбачити, що коефіцієнт теплопровідності вугілля повинен збільшуватися із зростанням його зольності. Встановлено, що теплопровідність вугілля вздовж нашарування на 3-7 % вище, ніж перпендикулярно нашаруванню.

Теплоємність матеріалу визначається кількістю тепла, необхідного для підняття температури 1 г даного тіла з t1 до t2 і характеризується питомою теплоємністю тіла: 

 

 

де - середня питома теплоємність Дж/(г К);

q - кількість тепла, необхідна  для підвищення температури тіла  від t1 до t2, Дж/кг. 

 

Якщо кількість тепла q, необхідна  для нагрівання тіла від t1 до t2 не залежить від температури, то величина постійна. Однак у більшості випадків q залежить від температури, і ця залежність може бути представлена наступною емпіричною формулою: 

 

,

звідси

 

де: си - дійсна питома теплоємність тіла. 

 

Для визначення теплоємності твердих  тіл застосовується ряд способів, які можна розділити на три  групи:

а) метод змішання;

б) методи, основані на вимірюванні  швидкості нагрівання або охолоджування;

в) методи прямого визначення істинної теплоємності.

Згідно з теоретичними передумовами, питома теплоємність вугілля повинна  меншати в ряді вуглефікації, якщо врахувати, що водень і вуглеводні володіють  більшою теплоємністю, ніж графіт, до структури якого наближається вугілля при підвищенні ступеня метаморфізму. Наприклад, теплоємність водню рівна 2,30, металу - 2,30, ацетилену - 1,63 і графіту - 0,84 кДж/(кг град.). Залежність середньої питомої теплоємності вугілля при однаковій температурі від виходу летких речовин можна прийняти лінійною і виразити рівнянням: 

 

, кДж/кг град, 

 

де: сt - питома теплоємність вугілля при температурі t, 0С;

А і В - емпіричні коефіцієнти. У  інтервалі температур 0-100 0С А=0,900-1,025; В=0,034-0,050.  

 

Теоретичний аналіз і обробка експериментальних  даних дозволили встановити закономірність зміни теплоємності вугілля від  температури. У інтервалі температур від 0 до 250-300 0С питома теплоємність вугілля зростає і, досягши максимуму при 270-350 0С, вона меншає при подальшому підвищенні температури, наближаючись при 1000 0С до теплоємності графіту.

Информация о работе Химия и физика горючих ископаемых