Производство аммиачной селитры

Автор работы: Пользователь скрыл имя, 16 Сентября 2013 в 21:47, курсовая работа

Краткое описание

В природе и в жизни человека азот имеет исключительно важное значение. Он входит в состав белковых соединений (16—18%), являющихся основой растительного и животного мира. Человек ежедневно потребляет 80—100 г белка, что соответствует 12—17 г азота.
Для нормального развития растений требуются многие химические элементы. Основные из них — углерод, кислород, водород, азот, фосфор, магний, сера, кальций, калий и железо. Первые три элемента растения получают из воздуха и воды, остальные — извлекают из почвы.
Особенно большая роль в минеральном питании растений принадлежит азоту, хотя его среднее содержание в растительной массе не превышает 1,5%. Без азота не может жить и нормально развиваться ни одно растение.

Содержание

Введение 3
1 Физико-химические свойства аммиачной селитры 6
2 Методы производства 13
3 Основные стадии производства аммиачной селитры из аммиака и азотной кислоты 16
3.1 Получение растворов аммиачной селитры 16
3.1.1 Основы процесса нейтрализации 16
3.1.2 Характеристика нейтрализационных установок 18
3.1.3 Установки нейтрализации, работающие при атмосферном давлении 21
3.1.4 Установки нейтрализации, работающие при разрежении 25
3. 1 5 Основное оборудование 29
4 Материальные и энергетические расчеты 33
5 Термодинамический расчет 41
6 Утилизация и обезвреживание отходов в производстве аммиачной селитры 43
Заключение 49
Список использованных источников 50

Вложенные файлы: 1 файл

курсовая работа по ОХТ производство аммиачной селитры.doc

— 580.00 Кб (Скачать файл)

Наличие циркуляции в аппаратах ИТН исключает  перегрев в зоне реакции, что позволяет  проводить процесс нейтрализации  с минимальными потерями связанного азота.

В зависимости  от условий работы производства аммиачной  селитры соковый пар аппаратов ИТН используется для предварительного упаривания растворов селитры, для испарения жидкого аммиака, подогрева азотной кислоты и газообразного аммиака, направляемых в аппараты ИТН, и для испарения жидкого аммиака при получении газообразного аммиака, применяемого в производстве разбавленной азотной кислоты.

Растворы  аммиачной селитры из аммиаксодержащих газов получают на установках, основные аппараты которых работают при разрежении (испаритель) и при атмосферном давлении (скруббер-нейтрализатор). Такие установки громоздки и в них трудно поддерживать стабильный режим работы вследствие непостоянства состава аммиаксодержащих газов. Последнее обстоятельство отрицательно сказывается на точности регулирования избытка азотной кислоты, в результате чего в получаемых растворах аммиачной селитры часто содержится повышенное количество кислоты или аммиака.

Установки нейтрализации, работающие под абсолютным давлением 5—6 атм., мало распространены. Они требуют значительного расхода электроэнергии для сжатия газообразного аммиака и подачи в нейтрализаторы азотной кислоты под давлением. Кроме того, на этих установках возможны повышенные потери аммиачной селитры вследствие уноса брызг растворов (даже в сепараторах сложной конструкции брызги не удается полностью улавливать).

В установках, основанных на комбинированном методе, сочетаются процессы нейтрализации азотной кислоты аммиаком и получения плава аммиачной селитры, который можно непосредственно направлять на кристаллизацию (т. е. из таких установок исключаются выпарные аппараты для концентрирования растворов селитры). Для установок такого типа требуется 58—60%-ная азотная кислота, которую промышленность выпускает пока сравнительно в небольших количествах. Кроме того, часть аппаратуры должна быть выполнена из дорогостоящего титана. Процесс нейтрализации с получением плава селитры приходится проводить при весьма высоких температурах (200—220 °С). Учитывая свойства аммиачной селитры, для осуществления процесса при высоких температурах необходимо создать особые условия, предотвращающие термическое разложение плава селитры.

 

 

3.1.3 Установки  нейтрализации, работающие при  атмосферном давлении

В состав этих установок входят аппараты-нейтрализаторы ИТН (использование теплоты нейтрализации) и вспомогательная аппаратура.

На рисунке 1 изображена одна из конструкций аппарата ИТН, применяемая на многих действующих производствах аммиачной селитры.

 З1 – завихритель; ВС1 – внешний сосуд (резервуар); ВЦ1 – внутренний цилиндр (нейтрализационная часть); У1 – устройство для распределения азотной кислоты; Ш1 – штуцер для слива растворов; О1 – окна; У2 – устройство для распределения аммиака; Г1 – гидрозатвор; С1 – сепаратор-ловушка

 

 

 

 

 

 

 

 

 

 

Рисунок 1 – Аппарат-нейтрализатор ИТН с естественной циркуляцией растворов

Аппарат ИТН представляет собой вертикальный цилиндрический сосуд (резервуар) 2, в котором помещен цилиндр (стакан) 3 с полками 1 (завихритель) для улучшения смешения растворов. В цилиндр 3 подведены трубопроводы для ввода азотной кислоты и газообразного аммиака (реагенты подаются противотоком); трубы заканчиваются устройствами 4 и 7 для лучшего распределения кислоты и газа. Во внутреннем цилиндре происходит взаимодействие азотной кислоты с аммиаком. Этот цилиндр носит название нейтрализационной камеры.

Кольцевое пространство между сосудом 2 и цилиндром 3 служит для циркуляции кипящих растворов аммиачной селитры. В нижней части цилиндра имеются отверстия 6 (окна), соединяющие нейтрализационную камеру с испарительной частью ИТН. Из-за наличия этих отверстий производительность аппаратов ИТН несколько снижается, зато достигается интенсивная естественная циркуляция растворов, что приводит к уменьшению потерь связанного азота.

Выделяющийся  из раствора соковый пар отводится через штуцер в крышке аппарата ИТН и через ловушку-сепаратор 9. Образующиеся в цилиндре 3 растворы селитры в виде эмульсии — смеси с соковым паром поступают в сепаратор через гидрозатвор 5. Из штуцера нижней части ловушки-сепаратора растворы аммиачной селитры направляются в донейтрализатор-мешалку для дальнейшей обработки. Гидрозатвор, имеющийся в испарительной части аппарата, позволяет поддерживать в нем постоянный уровень раствора и препятствует выходу сокового пара без промывки от увлекаемых им брызг раствора.

Паровой конденсат  образуется на тарелках сепаратора вследствие частичной конденсации сокового пара. При этом теплота конденсации отводится оборотной водой, проходящей по змеевикам, уложенным на тарелках. В результате частичной конденсации сокового пара получается 15—20%-ный раствор NН4NO3, который направляется на упаривание вместе с основным потоком раствора аммиачной селитры.

На рисунке 2 представлена схема одной из установок нейтрализации, работающих при давлении, близком к атмосферному.

 


 НБ1 – напорный бак; С1 – сепаратор; И1 – испаритель; П1 – подогреватель; СК1 – сборник для конденсата; ИТН1 – аппарат ИТН; М1 – мешалка; ЦН1 – центробежный насос

 

 

 

 

 

 

 

 

 

 

 

 

 

Рисунок 2 – Схема установки нейтрализации, работающей при атмосферном давлении

 

Чистая или с добавками  азотная кислота подается в напорный бак снабженный постояннодействующим переливом избытка кислоты в хранилище.

Из напорного бака 1 азотная кислота направляется непосредственно в стакан аппарата ИТН 6 или через подогреватель (на рисунке не показан), где нагревается теплом сокового пара, отводимого через сепаратор 2.

Газообразный аммиак поступает в испаритель 3 жидкого аммиака, затем в подогреватель 4, где нагревается теплом вторичного пара из расширителя или горячим конденсатом греющего пара выпарных аппаратов, и далее направляется по двум параллельным трубам в стакан аппарата ИТН 6.

В испарителе 3 брызгоунос жидкого аммиака испаряется и происходит отделение загрязнений, обычно сопутствующих газообразному аммиаку. При этом образуется слабая аммиачная вода с примесью смазочного масла и катализаторной пыли цеха синтеза аммиака.

Получаемый  в нейтрализаторе раствор аммиачной селитры через гидравлический затвор и брызгоуловитель-ловушку непрерывно поступает в мешалку-донейтрализатор 7, откуда после нейтрализации избыточной кислоты направляется на упаривание.

Выделяющийся  в аппарате ИТН соковый пар, пройдя сепаратор 2, направляется для использования в качестве греющего пара в выпарные аппараты первой ступени.

Конденсат сокового пара из подогревателя 4 собирается в сборнике 5, откуда расходуется на разные производственные нужды.

Перед пуском нейтрализатора выполняются подготовительные работы, предусмотренные в рабочих  инструкциях. Отметим только некоторые  из подготовительных работ, связанных  с нормальным ведением процесса нейтрализации и с обеспечением техники безопасности.

Прежде всего, требуется залить в нейтрализатор раствор аммиачной селитры или паровой конденсат до пробоотборного краника.

Затем необходимо наладить непрерывную подачу азотной кислоты в напорный бак и ее перелив в складское хранилище склада. После этого требуется принять газообразный аммиак из цеха синтеза аммиака, для чего необходимо на короткое время открыть задвижки на линии отвода в атмосферу сокового пара и вентиль выхода раствора в мешалку-донейтрализатор. Этим предупреждается создание в аппарате ИТН повышенного давления и образование небезопасной аммиачно-воздушной смеси при пуске аппарата.

В этих же целях  до пуска нейтрализатор и взаимосвязанная  с ним коммуникация продуваются  паром.

После достижения нормального режима работы соковый пар из аппарата ИТН направляется на использование в качестве греющего пара[1],][8].

3.1.4 Установки  нейтрализации, работающие при  разрежении

Совместная  переработка аммиаксодержащих газов и газообразного аммиака нецелесообразна, так как связана с большими потерями аммиачной селитры, кислоты и аммиака из-за наличия в аммиаксодержащих газах значительного количества примесей (азот, метан, водород и др.)- Эти примеси, барботируя через образующиеся кипящие растворы аммиачной селитры, уносили бы с соковым паром связанный азот. Кроме того, соковый пар, загрязненный примесями, нельзя было бы использовать в качестве греющего пара. Поэтому аммиаксодержащие газы, как правило, перерабатывают отдельно от газообразного аммиака.

В установках, работающих при разрежении, использование  тепла реакции осуществляется вне нейтрализатора— в вакуум-испарителе. Здесь горячие растворы аммиачной селитры, поступающие из нейтрализатора, кипят при температуре, соответствующей вакууму в аппарате. В состав таких установок входят: нейтрализатор скрубберного типа, вакуум-испаритель и вспомогательное оборудование.

На рисунке 3 представлена схема установки нейтрализации, работающей с применением вакуум-испарителя.


 НР1 – нейтральзатор скрубберного типа; Н1 – насос; В1 – вакуум-испаритель; В2 – вакуум-сепаратор; НБ1 – напорный бак азотной кислоты; Б1 - бак (затворсмеситель); П1 – промыватель; ДН1 - донейтрализатор

 

 

 

 

 

 

 

 

 

Рисунок 3 – Схема установки нейтрализации с вакуум-испарителем

 

Аммиаксодержащие газы при температуре 30—90 °С под давлением 1,2—1,3 атм подаются в нижнюю часть скруббера-нейтрализатора 1. В верхнюю часть скруббера из бака- затвора 6 поступает циркуляционный раствор селитры, в который обычно непрерывно подается из бака 5 азотная кислота, иногда предварительно нагретая до температуры не выше 60 °С. Процесс нейтрализации проводится при избытке кислоты в пределах 20-50 г/л. В скруббере 1 обычно поддерживается температура на 15—20 °С ниже температуры кипения растворов, что позволяет предотвращать разложение кислоты и образование тумана аммиачной селитры. Заданная температура поддерживается благодаря орошению скруббера раствором из вакуум-испарителя, который работает при разрежении 600 мм рт. ст., поэтому раствор в нем имеет более низкую температуру, чем в скруббере.

Получаемый  в скруббере раствор селитры засасывается в вакуум-испаритель 5, где при разрежении 560—600 мм рт. ст. происходит частичное испарение воды (упаривание) и повышение концентрации раствора.

Из вакуум-испарителя раствор стекает в бак-гидрозатвор 6, откуда большая его часть снова поступает на орошение скруббера 1, а остальное количество направляется в донейтрализатор 8. Соковый пар, образующийся в вакуум-испарителе 3, через вакуум-сепаратор 4 направляется в поверхностный конденсатор (на рисунке не показан) или в конденсатор смесительного типа. В первом случае конденсат сокового пара используется в производстве азотной кислоты, во втором — для различных других целей. Разрежение в вакуум-испарителе создается благодаря конденсации сокового пара. Несконденсировавшиеся пары и газы отсасываются из конденсаторов вакуум-насосом и отводятся в атмосферу.

Отработанные  газы из скруббера 1 поступают в аппарат 7, где промываются конденсатом  для удаления капель раствора селитры, после чего также удаляются в атмосферу. В мешалке-донейтрализаторе растворы нейтрализуются до содержания 0,1—0,2 г/л свободного аммиака и вместе с потоком раствора селитры, полученного в аппаратах ИТН, направляются на упаривание.

На рисунке 4 представлена более совершенная схема вакуум-нейтрализации.

 ХК1 – холодильник-конденсатор;  СН1 - скруббер-нейтрализатор; С1, С2  – сборники; ЦН1, ЦН2, ЦН3 – центробежные  насосы; П1 – промыватель газов;  Г1 – гидрозатвор; Л1 – ловушка;  В1 – вакуум-испаритель; БД1 - бак-донейтрализатор; В2 – вакуум-насос; П2 - промыватель сокового аппарата; К1 – конденсатор поверхностный

 

Рисунок 4 – Схема вакуум-нейтрализации:

 

Газы дистилляции  направляются в нижнюю часть скруббера  нейтрализатора 2, орошаемого раствором из сборника 3 с помощью циркуляционного насоса 4.

В сборник 3 через  гидрозатвор 6 поступают растворы из скруббера-нейтрализатора 2, а также растворы после ловушки вакуум-испарителя 10 и промывателя сокового пара 14.

Через напорный бак (на рисунке не показан) азотная кислота раствор из промывателя газов 5, орошаемого конденсатом сокового пара, непрерывно поступают в сборник 7. Отсюда растворы циркуляционным насосом 8 подаются в промыватель 5, пройдя который возвращаются в сборник 7.

Горячие газы после промывателя 5 охлаждаются в холодильнике-конденсаторе 1 и выбрасываются в атмосферу.

Горячие растворы аммиачной селитры из гидрозатвора 6 засасываются с помощью вакуум-насоса 13 в вакуум-испаритель 10, где концентрация NH4NO3 увеличивается на несколько процентов.

Информация о работе Производство аммиачной селитры