Бензин, его марки. Производство бензина

Автор работы: Пользователь скрыл имя, 27 Ноября 2011 в 21:32, курсовая работа

Краткое описание

Целью данной работы является изучение процесса производства бензина.
Задачи:
- изучить процесс производства бензина и его свойства;
- определить виды бензина;
- дать характеристику различным маркам бензина.

Содержание

ВВЕДЕНИЕ
………..…………………………………………………………..
3
ГЛАВА 1.
БЕНЗИН, КАК ПРОДУКТ НЕФТЕПЕРЕРАБОТКИ ……
6

1.1. История бензина в России и в мире …………….………
6

1.2. Виды бензинов …….……………….........…………………
7

1.3. Свойства бензинов ……………………………………….
8
ГЛАВА 2.
ПРОИЗВОДСТВО БЕНЗИНА ………………………….…..
10

2.1. Процессы переработки нефти при производстве бензина ………………………………………………………….
10
2.2. Ассортимент авиационных бензинов ………………..…
15

2.3. Марки автомобильного бензина ……………..………….
16
Заключение
……………………………………………………………………
21
Приложение ……………………………………………………………………
23
Список использованной литературы …………………………………………
26

Вложенные файлы: 1 файл

НАЦИОНАЛЬНЫЙ ИНСТИТУТ БИЗНЕСА.2 doc.doc

— 250.50 Кб (Скачать файл)
  • иметь групповой углеводородный состав, обеспечивающий устойчивый, бездетонационный процесс сгорания на всех режимах работы двигателя;

______________________________________________________

1 Романов И.А. Производство бензина.- М.: Стройиздат, 2006,С.23

 
     
  • не изменять своего состава и свойств при  длительном хранении и не оказывать  вредного влияния на детали топливной системы, резервуары, резинотехнические изделия;

     Химическая  стабильность характеризует способность бензина сохранять свои свойства и состав при длительном хранении, перекачках, транспортировании или при нагревании впускной системы двигателя. Химические изменения в бензине, происходящие в условиях транспортирования или хранения, связаны с окислением входящих в его состав углеводородов. Следовательно, химическая стабильность бензинов определяется скоростью реакций окисления, которая зависит от условий процесса и строения окисляемых углеводородов

  • иметь хорошие антидетонационные характеристики и др.

     Атомобильные  бензины должны быть химически нейтральными и не вызывать коррозию металлов и емкостей, а продукты их сгорания - коррозию деталей двигателя. Коррозионная активность бензинов и продуктов их сгорания зависит от содержания общей и меркаптановой серы, кислотности, содержания водорастворимых кислот и щелочей, присутствия воды. Эти показатели нормируются в нормативно-технической документации на бензины. Бензин должен выдерживать испытание на медной пластинке. Эффективным средством защиты от коррозии топливной аппаратуры является добавление в бензины специальных антикоррозионных или многофункциональных присадок.

в последние  годы экологические свойства топлива выдвигаются на первый план. 1

 

 
 
 
 

_____________________________________________

     1 Дизельное топливо. Бензин. Керосин.: Узнай больше о нефтепродуктах: http://toplivo.fittime.ru/item_2_2a.html

 

ГЛАВА 2. ПРОИЗВОДСТВО БЕНЗИНА

2.1. Процессы переработки нефти при производстве бензина

 

     ПЕРЕГОНКА

     Периодическая перегонка. На начальных этапах развития нефтехимической промышленности сырая нефть подвергалась так называемой периодической перегонке в вертикальном цилиндрическом перегонном аппарате. Процессы дистилляции были неэффективны, потому что отсутствовали ректификационные колонны и не получалось чистого разделения продуктов перегонки. (см. Приложение 1)

     Трубчатые перегонные аппараты. Развитие процесса периодической перегонки привело к использованию общей ректификационной колонны, из которой с различных уровней отбирались дистилляты с разной температурой кипения. Эта система используется и сегодня. Поступающая нефть нагревается в змеевике примерно до 320°С, и разогретые продукты подаются на промежуточные уровни в ректификационной колонне. Такая колонна может иметь от 30 до 60 расположенных с определенным интервалом поддонов и желобов, каждый из которых имеет ванну с жидкостью. Через эту жидкость проходят поднимающиеся пары, которые омываются стекающим вниз конденсатом. При надлежащем регулировании скорости обратного стекания (т.е. количества дистиллятов, откачиваемых назад в колонну для повторного фракционирования) возможно получение бензина наверху колонны, керосина и светлых горючих дистиллятов точно определенных интервалов кипения на последовательно снижающихся уровнях. Обычно для того, чтобы улучшить дальнейшее разделение, остаток от перегонки из ректификационной колонны подвергают вакуумной дистилляции.

Конструкция ректификационных колонн в нефтеперерабатывающей промышленности становится произведением искусства, в котором ни одна деталь не остается без внимания. Путем очень точного контроля температуры,

 
 

давления, а также потоков жидкостей  и паров разработаны методы сверхтонкого фракционирования. Эти колонны достигают высоты 60 м и выше

 и  позволяют разделять химические  соединения, т.кип. которых отличается  менее чем на 6° С. Они изолированы от внешних атмосферных воздействий, а все этапы дистилляции автоматически контролируются. Процессы в некоторых таких колоннах происходят в условиях высоких давлений, в других – при давлениях, близких к атмосферному; аналогично температуры изменяются от экстремально высоких до значений ниже –18° С.

     ТЕРМИЧЕСКИЙ КРЕКИНГ 

     Склонность  к дополнительному разложению более тяжелых фракций сырых нефтей при нагреве выше определенной температуры привела к очень важному успеху в использовании крекинг-процесса. Когда происходит разложение высококипящих фракций нефти, углерод-углеродные связи разрушаются, водород отрывается от молекул углеводородов и тем самым получается более широкий спектр продуктов по сравнению с составом первоначальной сырой нефти. Например, дистилляты, кипящие в интервале температур 290–400° С, в результате крекинга дают газы, бензин и тяжелые смолоподобные остаточные продукты. Крекинг-процесс позволяет увеличить выход бензина из сырой нефти путем деструкции более тяжелых дистиллятов и остатков, образовавшихся в результате первичной перегонки.

     Выход кокса определяется природой перерабатываемого сырья и степенью рециклизации наиболее тяжелых фракций.

     Как правило, из исходного крекируемого объема образуется примерно 15–25% лигроина и 35–50% газойля (т.е. легкого дизельного топлива) наряду с крекинг-газами и  коксом. Последний используется в  основном как топливо, исключая образующиеся специальные виды кокса (один из них является продуктом обжига и используется при производстве углеродных электродов). Коксование до сих пор пользуется популярностью главным образом как процесс подготовки исходного материала для каталитического крекинга.

     КАТАЛИТИЧЕСКИЙ  КРЕКИНГ 

 

     Катализатор – это вещество, которое ускоряет протекание химических реакций без  изменения сути самих реакций. Каталитическими  свойствами обладают многие вещества, включая металлы, их оксиды, различные  соли.

     Процесс Гудри. Исследования Э.Гудри огнеупорных глин как катализаторов привели к созданию в 1936 эффективного катализатора на основе алюмосиликатов для крекинг-процесса.

     Среднекипящие дистилляты нефти в этом процессе нагревались и переводились в парообразное состояние; для увеличения скорости реакций расщепления, т.е. крекинг-процесса, и изменения характера реакций эти пары пропускались через слой катализатора. Реакции происходили при умеренных температурах 430–480° С и атмосферном давлении в отличие от процессов термического крекинга, где используются высокие давления. Процесс Гудри был первым каталитическим крекинг-процессом, успешно реализованным в промышленных масштабах.

     Целью большинства крекинг-процессов является достижение оптимального выхода бензина. При крекинге происходят распад тяжелых молекул, а также сложные процессы синтеза и перестройки структуры молекул углеводородов. Влияние разных катализаторов различно. Некоторые из них, такие, как оксиды хрома и молибден, ускоряют реакцию дегидрогенизации (отщепление водорода). Глины и специальные алюмосиликатные составы, используемые в промышленном каталитическом крекинге, способствуют ускоренному разрыву углерод-углеродных связей больше, чем отрыву водорода. Они также способствуют изомеризации линейных молекул в разветвленные. Эти составы замедляют полимеризацию и образование дегтя и асфальта, так что нефти не просто деструктурируются, а обогащаются полезными компонентами.

     РИФОРМИНГ

     Риформинг – это процесс преобразования линейных и нециклических углеводородов в бензолоподобные ароматические молекулы. Ароматические углеводороды имеют более высокое октановое число, чем молекулы других углеводородов, и поэтому они предпочтительней для производства современного высокооктанового бензина.

     При термическом риформинге, как и  при каталитическом крекинге, основная цель состоит в превращении низкооктановых бензиновых компонентов в более высокооктановые. Процесс обычно применяется к парафиновым фракциям прямой перегонки, кипящим в пределах 95–205° С. Более легкие фракции редко подходят для таких превращений.

     Существуют  два основных вида риформинга –  термический и каталитический. В  первом соответствующие фракции  первичной перегонки нефти превращаются в высокооктановый бензин только под воздействием высокой температуры; во втором преобразование исходного продукта происходит при одновременном воздействии как высокой температуры, так и катализаторов. Более старый и менее эффективный термический риформинг используется кое-где до сих пор, но в развитых странах почти все установки термического риформинга заменены на установки каталитического риформинга.

     Если  бензин является предпочтительным продуктом, то почти весь риформинг осуществляется на платиновых катализаторах, нанесенных на алюминийоксидный или алюмосиликатный носитель.

Большинство установок риформинга – это установки  с неподвижным слоем. (Процесс  каталитического риформинга, в котором  используется стационарный катализатор, называется платформингом.) Но под действием  давления ок. 50 атм (при получении бензина с умеренным октановым числом) активность платинового катализатора сохраняется примерно в течение месяца. Установки, в которых используется один реактор, приходится останавливать на несколько суток для регенерации катализатора. В других установках используется несколько реакторов с одним добавочным, где проводится необходимая регенерация. Жизнь платинового катализатора сокращается при наличии серы, азота, свинца и других «ядов». Там, где эти компоненты представляют проблему, обычно до входа в реактор проводят предварительную обработку смеси водородом (т.н. гидроочистка, когда до подачи в реактор нефтяных

 

погонов – бензинов прямой перегонки –  их пропускают через водородсодержащие  газы, которые связывают вредные  компоненты и снижают их содержание до допустимых пределов). Некоторые реакторы с неподвижным слоем заменяются на реакторы с непрерывной регенерацией катализатора. В этих условиях катализатор перемещается через реактор и непрерывно регенерируется.

     Реакции, в результате которых при каталитическом риформинге повышается октановое число, включают:

     1) дегидрирование нафтенов и их  превращение в соответствующие  ароматические соединения;

     2) превращение линейных парафиновых  углеводородов в их разветвленные  изомеры; 

     3) гидрокрекинг тяжелых парафиновых углеводородов в легкие высокооктановые фракции;

     4) образование ароматических углеводородов  из тяжелых парафиновых путем  отщепления водорода.

Большинство богатых водородом газов, выделяющихся в этих установках, используются при гидрокрекинге и т.п. 1

     ДРУГИЕ  ПРОЦЕССЫ ПРОИЗВОДСТВА БЕНЗИНА 

     Кроме крекинга и риформинга существует несколько  других важных процессов производства бензина. Первым из них, который стал экономически выгодным в промышленных масштабах, был процесс полимеризации, который позволил получить жидкие бензиновые фракции из олефинов, присутствующих в крекинг-газах.

     Полимеризация. Полимеризация пропилена – олефина, содержащего три атома углерода, и бутилена – олефина с четырьмя атомами углерода в молекуле дает жидкий продукт, который кипит в тех же пределах, что и бензин, и имеет

______________________________________________________________

     1Химия и методы переработки нефти: http://www.bigpi.biysk.ru/encicl/articles/41/1004148/1004148A.htm

 
 

октановое число от 80 до 82. Нефтеперерабатывающие  заводы, использующие процессы полимеризации, обычно работают на фракциях крекинг-газов, содержащих олефины с тремя и четырьмя атомами углерода.

Алкилирование. В этом процессе изобутан и газообразные олефины реагируют под действием катализаторов и образуют жидкие изопарафины, имеющие октановое число, близкое к таковому у изооктана. Вместо полимеризации изобутилена в изооктен и затем гидрогенизации его в изооктан, в данном процессе изобутан реагирует с изобутиленом и образуется непосредственно изооктан.

     Все процессы алкилирования для производства моторных топлив производятся с использованием в качестве катализаторов либо серной, либо фтороводородной кислоты при температуре сначала 0–15° C, а затем 20–40° С.

Информация о работе Бензин, его марки. Производство бензина