Анализ кредитного портфеля банка (на примере Сберегательного банка России)

Автор работы: Пользователь скрыл имя, 19 Ноября 2014 в 20:39, реферат

Краткое описание

Целью данной работы является рассмотрение теоретических аспектов предмета кредита, в общем, и кредитного портфеля в частности, анализ проблемы управления кредитным портфелем в банках Российской Федерации и возможных путей решения этих проблем.
В данной работе поставлена задача - определения способов совершенствования управления кредитным портфелем в банках Российской Федерации.
В первой главе данной работы рассматриваются понятие кредитного портфеля банка его принципы формирования, а также классификация кредитного портфеля.

Содержание

Введение
Глава 1. Кредитный портфель коммерческого банка.
Понятие кредитного портфеля, его принципы формирования.
Классификация кредитного портфеля.
Глава 2. Анализ кредитного портфеля банка (на примере Сберегательного банка России).
2.1. Экономическая характеристика банка.
2.2. Анализ и оценка кредитного портфеля банка.
Заключение
Список литературы

Вложенные файлы: 1 файл

Реферат.doc

— 166.50 Кб (Скачать файл)

М.М. Новосёлов предлагает иную классификацию парадоксов, которая, по его мнению, более детально обращает внимание на особенности допущений (и принципов) весьма общего порядка, способных проявиться в основе того или иного парадокса. Данная классификация разделяет парадоксы на:

1) парадоксы, связанные с математической индукцией (парадокс кучи, космологические парадоксы; парадокс Хао-Вана, связанный с неоднозначностью натурального ряда в аксиоматической теории множеств и формализуемостью доказательств непротиворечивости);

2) парадоксы релевантности (т.е. те, в основе которых лежит допущение о возможности игнорировать подробности смысловых связей); с этими парадоксами связаны и парадоксы математической индукции, так как попытки освободиться от этих парадоксов основаны на математической индукции;

3) парадоксы отождествлений (в основе которых лежит допущение о независимости тождества от отождествлений); они также связаны с парадоксами математической индукции и парадоксами актива-пассива;

4) семантические парадоксы (основанные на допущение об осмысленности отношения обозначения);

5) теоретико-множественные парадоксы (сводимые к предыдущим);

6) парадоксы актива-пассива (отождествление происходящего с производимым и т.п.; к ним относятся парадоксы о необходимости начала мира, антиномии Канта); кроме того, из-за парадоксов актива-пассива возникают парадоксы отождествлений, а также следующие группы парадоксов:

7) парадоксы модальностей, которые допускают дальнейшую классификацию: отождествление возможного с действительным, ошибка смещения целей (приводящая к тому, что достаточное считается необходимым и т.п.); пренебрежение условиями возможности (что связано с парадоксами релевантности и приводит к смешению возможности с действительностью); парадокс «утренняя звезда»

8) парадоксы из-за смещения интуитивных понятий с четко определенными (они родственны семантическим парадоксам)

В электронной энциклопедии Wikipedia приводится следующая классификация парадоксов:

I. Логические

II. Парадоксы самореференции (самоотносимости):

III. Неопределённые:

- парадокс Корабля Тесея: если каждый элемент корабля был заменён хотя бы один раз, можно ли считать корабль прежним кораблём?

- парадокс кучи: в какой момент куча перестанет быть кучей, если отнимать от неё по одной песчинке? Или, в какой конкретно день какой-либо человек становится лысым? И т.д.

IV. Вероятностные:

- парадокс пари: в некоторых ситуациях выгодно спорить обоим противникам, ибо оба имеют бо́льшие шансы на победу, чем на проигрыш;

- парадокс определения: невозможно  дать определение определению, ибо  пока мы не дали это определение, сам о понятие определения  остается неизвестным;

V.Связанные с бесконечностью:

- парадокс Гильберта: Если гостиница с бесконечным количеством номеров полностью заполнена, в неё можно поселить ещё посетителей, даже бесконечное число;

V1. Химические:

- парадокс Левинталя: промежуток времени, за который протеиновая цепочка приходит к своему скрученному состоянию, на много порядков меньше, чем оно могло бы быть, если она просто перебирала все возможные конфигурации.

VII. Физические:

- парадокс Архимеда: огромный корабль может плавать в нескольких литрах воды;

VIII. Связанные с путешествиями во времени:

- парадокс дедушки: вы перемещаетесь в прошлое и убиваете своего дедушку до того, как он познакомился с Вашей бабушкой. Из-за этого Вы не сможете появиться на свет и, следовательно, не сможете убить своего дедушку;

IX. Философские:

- парадокс эпикурейцев, или Проблема зла (англ.): кажется, что существование зла несовместимо с существованием всемогущего и заботливого Бога;

X. Экономические:

- парадокс ценности: почему вода стоит дешевле алмазов, хотя потребность человека в ней гораздо больше, чем в алмазах? и  т.д.

Таким образом, можно утверждать, что в настоящий момент существует очень много различных классификаций парадоксов и ни одну из них нельзя назвать совершенной. Попытаться классифицировать, упорядочить парадоксы – это как попытаться объять необъятное. Парадоксы существуют повсюду, они неотъемлемая часть любой науки. Разнообразие наук и объясняет разнородность парадоксов, которая служит помехой для создания точной и общепринятой классификации.

В своей работе я не смогу рассмотреть всех парадоксов и их классификации, поэтому выберу простую классификацию и буду ее придерживаться: разделим парадоксы на логические и парадоксы, существующие в других науках (физические, математические). Несмотря на явное упрощение, именно такое разделение представляется наиболее подходящим и оправданным целями данной работы.

 

                        ГЛАВА 2. ПАРАДОКСЫ В НАУКЕ

 

Как говорил А.К. Сухотин: «Беспарадоксальных наук в настоящее время не существует. Фактически наука и движется от парадокса к парадоксу. Это вехи, которыми обозначены ее взлеты. Но и падения тоже, поскольку выявление парадокса воспринимается вначале как наступление катастрофы, как развал искусно построенного здания».

Наиболее ярки и заметны парадоксы в точных науках – логике и математике. Появление парадоксов в данных науках парадоксально. Логика и математика – науки точные, не терпящие никаких противоречий вообще, не говоря уже о «неразрешимых противоречиях». Именно поэтому парадоксы, возникающие в этих науках, являются наиболее интересными и требуют более детального рассмотрения.

О парадоксах в логике скажу кратко:

Логический парадокс – это положение, которое сначала ещё не является очевидным, однако, вопреки ожиданиям, выражает истину. Логические парадоксы пользуются особой известностью, и это не случайно. Дело в том, что логика – это абстрактная наука. В ней нет экспериментов, нет даже фактов в обычном смысле этого слова. Строя свои системы, логика исходит, в конечном счете, из анализа реального мышления .Но результаты этого мышления не являются констатациями каких-либо отдельных процессов или событий, которая должна была бы объяснить теория.

Парадокс «Лжец» считается наиболее известным и самым интересным из всех логических парадоксов. Одним из подтверждения данного факта можно считать огромное количество вариаций на тему этого парадокса.

В простейшем варианте «Лжеца» человек произносит всего одну фразу: «Я лгу». Или говорит: «Высказывание, которое я сейчас произношу, является ложным». Или: «Это высказывание ложно».

Рассматривая парадоксы можно утверждать, что они широко распространены в логике. Они озадачили ученых с момента своего открытия и, скорее всего, будут озадачивать всегда. Парадоксы в логике следует рассматривать не просто как проблемы, которые ожидают своего решения, а как неисчерпаемый сырой материал для размышления. Они важны, поскольку размышление о них затрагивает наиболее фундаментальные вопросы всей логики, а значит, и всего мышления.

Я решила рассмотреть в своей работе подробно парадоксы в физике и математике, т.к именно эти науки мне  близки и интересны.

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           2.1 ПАРАДОКСЫ В МАТЕМАТИКЕ И В ФИЗИКЕ

 

Математику называют царицей наук и считают самой точной и строгой областью научного исследования. Cуществует мнение, что математики плохо приспособлены к законам действительного парадоксального мира, так как их «математический мир» отличается идеальностью, логичностью и непротиворечивостью. Поэтому наличие парадоксов в математике – это факт сам по себе парадоксальный. И все-таки это – факт. Парадоксы существуют даже в математике. Более того, математические парадоксы являются наиболее впечатляющими, а вместе с тем и особенно сложными и трудными для понимания.

За свою историю математика испытала три сильнейших потрясения, три кризиса, которые касались ее основ. И все три сопровождались обнаружением парадоксов. Одновременно с этим их преодоление достигалось ценой введения необычных понятий, утверждением невероятных идей. Парадоксы разрешались благодаря тому лишь, что они порождали новые, также парадоксальные теории.

Первый кризис разразился еще в древности и был вызван открытием факта несоизмеримости величин. Другими словами две однородные величины, выражающие длины или площади, являются соизмеримыми, если они обладают так называемой общей мерой. То есть если имеется такая однородная с ними величина, которая укладывается в каждой из них целое число раз. Однако выяснилось, что диагональ квадрата и его сторона не имеют общей меры, и их отношения нельзя выразить с помощью известных к тому времени рациональных, то есть целых или дробных чисел. Это и вызвало кризис античной математики. Парадокс состоял в том, что по отдельности каждая из несоизмеримых величин – и диагональ и сторона квадрата – может быть измерена и количественно точно определена. Однако выразить их длины через отношения друг к другу посредством имевшихся тогда чисел не удавалось.

Этот парадокс удалось преодолеть путём введения в математику √ (квадратного корня). Он был введен благодаря следующим рассуждениям:

Если квадрат разрезать по диагонали, получается два прямоугольных равнобедренных треугольника, где линия бывшей диагонали будет гипотенузой, а стороны квадрата – катетами. Согласно знаменитой теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, точнее, площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Отсюда и величина отношения гипотенузы к катету (или диагонали к стороне квадрата), равная √2.

Очередная катастрофа произошла несколько веков спустя и особенно сильно проявлялась в математике в XVII-XVIII вв. В этот раз дело касалось истолкования бесконечно малых величин. Бесконечно малые – это переменные величины, стремящиеся к нулю, точнее, как было показано позже, стремящиеся к пределу, равному нулю. Кризис возник из-за расплывчатого понимания бесконечно малого. В одних случаях оно приравнивалось к нулю и при вычислениях отбрасывалось, в других же – принималось как значение, отличное от нуля, о чем говорит и само название. Причина такого противоречивого подхода к бесконечно малым объясняется тем, что их рассматривали в качестве постоянных величин. Поэтому бесконечное понималось как нечто завершенное, имеющееся налицо, данное всеми своими элементами.

Выход из кризиса был найден созданием теории пределов, окончательно построенной в начале XIX века известным французским математиком О. Коши. Это парадоксальное состояние (полагать бесконечно малые нулями и в то же время неравными нулю) О. Коши разрешает введением качественно новых, невообразимых ранее величин. Он берет их из области возможного, а не действительного. Бесконечно малые – это величины, которые существуют лишь как постоянно изменяющиеся, стремящиеся к пределу, но никогда его не достигающие. То есть они всегда остаются в возможности, в потенции, так что не реализуется ни одна из указанных альтернатив. Величины не застывают в каких-либо одних конкретных значениях. Они постоянно изменяются, приближаясь к нулю, но и не превращаясь в нуль.

Последний кризис имел место на рубеже XIX-XX веков и был настолько мощным, что затронул не только саму математику, но и логику, поскольку эти науки тесно связаны, и язык, поскольку дело касалось способов точного выражения содержания наших мыслей.

К концу XIX века в качестве фундамента всего здания классической математики прочно утвердилась теория множеств, развитая выдающимся немецким ученым Г. Кантором. Понятие «множество» или «класс», «совокупность» – простейшее в математике. Оно не определяется, а поясняется примерами. Можно говорить о множестве всех книг, составляющих данную библиотеку, множестве всех точек данной прямой и т.д. Далее вводится понятие «принадлежать», то есть «быть элементом множества». Так, книги, точки являются элементами соответствующих множеств. Для определения множества необходимо указать свойство, которым обладают все его элементы.

Парадоксы начали активно изучаться. Вспомнили и о тех, что были выявлены еще древними (в частности, «парадокс лжеца»), изобретали новые: «никогда не говори «никогда», «каждое правило имеет исключение», «всякое обобщение неверно». В логике, лингвистике, математике – повсюду находили не замечаемые ранее противоречия.

Таким образом, математика не смогла избежать проникновения в неё парадоксов, как и многие другие науки. Как уже говорилось, наук без парадоксов не существует. Есть парадоксы и в физике. Нужно отметить, что физики в большинстве случаев воспринимают парадоксы спокойнее, чем математики. Это можно объяснить тем фактом, что предмет исследования физики – это окружающий мир, вся существующая действительность, во всем своём многообразии и со всеми своими противоречиями.

Парадоксы в физике были обнаружены ещё в глубокой древности. Их изучению особое внимание уделяли ученые в Древней Греции. Наиболее известными «парадоксами древней науки» являются парадоксы Зенона. Вот некоторые из них:

1) «Дихотомия» или добежит ли  бегун до финиша?

Рассуждения бегуна: Прежде, чем я добегу до финиша, мне необходимо пробежать половину дистанции, затем половину оставшейся половины, то есть ¾ всей дистанции. Прежде чем я преодолею последнюю четверть дистанции, мне необходимо пробежать её половину. И так всякий раз! Прежде чем преодолеть какое-то расстояние мне необходимо пробежать его половину. Этим половинам не будет конца. Я никогда не доберусь до финиша.

В.Г. Винокур пишет по поводу этого парадокса: «Даже сейчас, предоставив разным компьютерам формальным образом решить парадокс Зенона, мы убедимся, что они будут делить его до бесконечности, пока самый "умный" из них не напишет, что задача решения не имеет» . На самом же деле, если предположить, что на преодоление первой половины пути бегун затратит 1 минуту, то каждую половину очередного отрезка он пробегает за вдвое меньшее время, чем половину предыдущего отрезка. Бегун преодолеет дистанцию за 2 минуты, хотя за это время ему придется преодолеть бесконечно много половин соответствующих отрезков дистанции.

Информация о работе Анализ кредитного портфеля банка (на примере Сберегательного банка России)