Свойства фуллеренов

Автор работы: Пользователь скрыл имя, 14 Января 2014 в 12:19, курсовая работа

Краткое описание

Фуллерены представляют собой устойчивые многоатомные кластеры углерода с числом атомов от нескольких десятков и выше. Число атомов углерода в таком кластере не произвольно, а подчиняется определенной закономерности. Форма фуллеренов – сфероид, грани которого образуют пяти- и шестиугольники. Согласно геометрическому расчету, проведенному еще Эйлером, для построения такого многогранника необходимо, чтобы число пятиугольных граней было равно двенадцати, число же шестиугольных граней может быть произвольно.

Вложенные файлы: 1 файл

ФХ.docx

— 226.75 Кб (Скачать файл)

Следует признать, что проблема теоретического описания сверхпроводимости металлофуллеренов, как и традиционных высокотемпературных сверхпроводников, в настоящее время далека от разрешения.

 

Магнетизм в фуллеридах

Другим интересным свойством легированных фуллеренов является их ферромагнетизм. Впервые это явление было обнаружено при легировании фуллерена С60 тетрадиметиламиноэтиленом (ТДАЭ). Фуллерид С60-ТДАЭ оказался мягким ферромагнетиком  с температурой Кюри, равной 16 К. Магнитная восприимчивость характеризует реакцию магнетика на воздействие внешнего магнитного поля и определяется известным соотношением

M = cH,

где M - намагниченность или магнитный  момент единицы объема; c - магнитная восприимчивость; H - напряженность внешнего магнитного поля.

Вследствие того что при охлаждении ферромагнетика вблизи температуры  фазового перехода ТC происходит образование обменно-связанных групп атомов или молекул (кластеров) с большим магнитным моментом, восприимчивость резко увеличивается. Дальнейшее понижение температуры (Т < ТC) приводит к уменьшению восприимчивости, поскольку при Т = ТC происходит полная магнитная поляризация образца и его намагниченность не так активно реагирует на внешнее магнитное поле.

В области парамагнетизма, то есть при температурах выше ТC , магнитная восприимчивость ферромагнетика зависит от температуры в соответствии с законом Кюри-Вейсса:

где С - постоянная Кюри, равная m2N / 3k (k - постоянная Больцмана).         Молекула ТДАЭ, как и щелочные металлы, является хорошим донором, то есть легко отдает один электрон. Однако низкосимметричная структура С60-ТДАЭ, возможно, способствует дополнительному расщеплению зон фуллерида, что в совокупности с большими размерами и низкой симметрией молекулы ТДАЭ приводит к появлению электронных состояний молекулы С60 , в которых два электрона имеют одинаковые направления спинов, а следовательно, и магнитных моментов, так что суммарный спин некоторых молекул становится равным 1 (триплетное состояние). Однако это только предположение. Тем более что ферромагнетизм обнаружен и в другом фуллериде, имеющем высокосимметричную объемно-центрированную решетку. Этот фуллерид получается при легировании фуллерена С60 смесью брома и иода, которые смешиваются в одинаковых пропорциях (отношение I:Br = 1), а молекулярное отношение IBr к С60 составляет 2,5, что соответствует составу В5С60 , где В - атом галогена. Кривые зависимости М(Т) свидетельствуют о том, что этот фуллерид не является чистым ферромагнетиком. Такие зависимости характерны для магнитонеупорядоченных систем. Это же подтверждается значением магнитного момента молекулы С60 , вычисленным по экспериментальным результатам. Оно оказалось уникально малым (mБ, где mБ - магнетон Бора, единица измерения магнитного момента в атомной физике); для сравнения укажем, что у С60-ТДАЭ эта величина почти на два порядка больше. Одиночный электрон имеет магнитный момент, приблизительно равный 1 mБ.

В заключение отметим, что проблема магнетизма фуллеридов также ждет своего решения.

 

Оптические свойства

В общих чертах оптические свойства фуллеренов С60 представлены на рис. 6. Спектр инфракрасного поглощения содержит 4 «исторические» линии: по ним был впервые идентифицирован фуллерен в работе Крэчмера. Спектры видимой и УФ-областей содержат пики, соответствующие разрешенным оптическим переходам, а также экситонам. Коллективные возбуждения приводят к существованию двух типов плазмонов: пи и пи + сигма, соответствующих возбуждениям п-электронов или всей электронной системы в целом. Спектры комбинационного рассеяния содержат 2 дыхательные Аg-моды, соответствующие симметричным колебаниям всей молекулы и пентагонов, и 8 Hg-мод. В первом приближении УФ- и видимый спектры поглощения фуллеритов сохраняют характерные черты молекул в газовой фазе или в растворе.

Рисунок 6. Спектральная зависимость действительной и мнимой частей диэлектрической проницаемости пленок С60 при комнатной температуре.

В этом смысле фуллериты — типичные молекулярные кристаллы. Однако понижение симметрии и наличие кристаллического поля в фуллеритах оказывают влияние на правила отбора и на энергии межмолекулярных возбуждений (сдвиг и расщепление вырожденных электронных уровней). Оптика фуллеренов в одинаковой степени зависит как от внутримолекулярных,так и от межмолекулярных электронных процессов. В многочисленных работах начиная с 1991 г. измерялись спектры оптического поглощения, эллипсометрические спектры пленок и монокристаллов. В целом спектры оптического поглощения фуллереновых пленок можно описать, пользуясь понятиями, привычными для аморфных полупроводников. Из положения края поглощения можно определить величину оптической запрещенной зоны, которая составляет 1.8—1.9 эВ для С60, 1.66 эВ для С70. Наблюдаются плавно спадающие зависимости в области энергий ниже фундаментальных переходов — так называемый «хвост» Урбаха, а также подзонное поглощение на дефектах. Измерения поглощения в видимой области в зависимости от температуры, гидростатического давления и магнитного поля показали, что структуры в области края поглощения обязаны своим происхождением экситонам.

Характерные области края поглощения отмечены буквами А, С на рис. 8.

Рисунок 7. Зависимость коэффициента поглощения пленкой С60 от энергии кванта в области края поглощения.

В области В край поглощения хорошо описывается экспоненциальной зависимостью Урбаха обычно присутствие урбаховского хвоста поглощения связывают со структурным несовершенством образцов, с наличием большого количества дефектов, вызывающих появление хвостов плотности состояний в запрещенной зоне. Урбаховский хвост в поглощении кристаллов обычно меньше, чем на пленках, однако сообщалось и об обратном. Это позволяет предположить, что причина появления хвостов поглощения может быть не связана со структурными несовершенствами. В области С при обеих температурах наблюдалось субподзонное поглощение на примесях. Край оптического поглощения и параметр хвоста Урбаха в области Т < 150 К не зависят от температуры, медленно меняются в области 150 < Т < 260 К и быстро при Т > 260 К. Подзонное поглощение увеличивается при длительной экспозиции пленок на воздухе, однако на наклоне хвоста Урбаха это не отражается. Следовательно, хвост Урбаха является не следствием интеркаляции кислорода, а свойством, присущим самому материалу С60. Температурная зависимость объясняется с точки зрения корреляции между плотностью электронных состояний, ориентационным разупорядочением молекул и структурным фазовым переходом. При высоких температурах, когда молекулы С60 приобретают возможность свободного вращения, активируются вращательные, либрационные и межмолекулярные колебательные степени свободы. Кроме того, активируются дополнительные фононные моды, появляющиеся вследствие флуктуации межмолекулярных состояний. В фазе свободного вращения усиливаются электрон-фононные взаимодействия. Вклад как термического, так и структурного разупорядочения в параметр хвоста Урбаха приводит к его быстрому росту при температуре выше 260 К.Схема электронных уровней С60 в твердотельном и молекулярном состояниях приведена на рис. 8.

Рисунок 8. Схема энергетических уровней и возможных оптических переходов в пленках и растворах С60.

 

Заключение

Тот факт, что фуллерены обнаружены в естественных минералах, имеет  большое значение для науки о  Земле. Не исключено, что ряд неидентифицированных полос в спектрах оптического поглощения и рассеяния межзвездной пыли обусловлен фуллеренами. Еще в 60-х годах на основании теоретического анализа частот этих полос было высказано предположение о том, что они обусловлены углеродными частицами. Возможно, фуллерены помогут нам получить дополнительные сведения о возникновении и эволюции Вселенной.

Что касается практической деятельности человека, то здесь полезны  способности фуллерена изменять свои свойства при легировании от диэлектрических до сверхпроводящих и от диамагнетизма до ферромагнетизма. Относительно простая технология получения фуллеритов с различными свойствами позволяет надеяться на создание в скором времени квантоворазмерных структур с чередующимися слоями сверхпроводник - полупроводник (или диэлектрик), металл — ферромагнетик, сверхпроводник - магнетик и т.д. Возможно, такие структуры станут основой создания новых электронных приборов. Активные исследования твердых фуллеренов ведутся только пять лет. Многое еще не исследовано, и сейчас трудно предсказать все возможные применения этого необычного материала в практической деятельности.

 

Список использованной литературы

1. «Фуллерены. Их физические  и электрические свойства», СПб, 1999 год.

2. ст. В.Ф. Мастеров «Физические  свойства фуллеренов», Соровский образовательный журнал №1, 1997 год.

 

 

 

 

 

 


Информация о работе Свойства фуллеренов