Свойства фуллеренов

Автор работы: Пользователь скрыл имя, 14 Января 2014 в 12:19, курсовая работа

Краткое описание

Фуллерены представляют собой устойчивые многоатомные кластеры углерода с числом атомов от нескольких десятков и выше. Число атомов углерода в таком кластере не произвольно, а подчиняется определенной закономерности. Форма фуллеренов – сфероид, грани которого образуют пяти- и шестиугольники. Согласно геометрическому расчету, проведенному еще Эйлером, для построения такого многогранника необходимо, чтобы число пятиугольных граней было равно двенадцати, число же шестиугольных граней может быть произвольно.

Вложенные файлы: 1 файл

ФХ.docx

— 226.75 Кб (Скачать файл)

Министерство образования  и науки Российской Федерации 
Федеральное государственное бюджетное образовательное учреждение 
высшего профессионального образования 
МГТУ имени Г.И.Носова

Кафедра Машиностроительных и Металлургических Технологий

Курсовая работа по теме: «Свойства фуллеренов»

Выполнил: студент группы ТН-10 
Рязанов А.А. 
Проверила: Полякова М.А. 
 

 

 

 

 

 

Магнитогорск, 2013

Введение

Издавна человеку были известны две  кристаллические аллотропные модификации углерода: графит и алмаз. Еще в 1973 году Бочвар и Гальпери показали, что замкнутый полиэдр из атомов углерода в форме усеченного икосаэдра должен иметь замкнутую электронную оболочку и высокую энергию связи. Однако эта работа прошла незамеченной, и только в 1985 году Крото с сотрудниками обнаружили в масс-спектре продуктов разложения графита под действием лазерного пучка интенсивный пик с массой 720 у.е.м., происхождение которого объяснялось присутствием молекул С60. Другой, менее интенсивный пик, соответствующий массе 840 у.е.м., связывался с молекулой С70. Захватывающая история этого открытия подробно изложена в нобелевских лекциях Крото, Смолли и Керла. Новая аллотропная модификация углерода получила название «фуллерены». Открытие в 1990 году Крэчмером метода получения фуллеренов в макроскопических количествах дало начало интенсивным исследованиям и привело к появлению фактически новых разделов физики твердого тела, химии ароматических соединений, молекулярной электроники.

Фуллерены представляют собой  устойчивые многоатомные кластеры углерода с числом атомов от нескольких десятков и выше. Число атомов углерода в  таком кластере не произвольно, а  подчиняется определенной закономерности. Форма фуллеренов – сфероид, грани  которого образуют пяти- и шестиугольники. Согласно геометрическому расчету, проведенному еще Эйлером, для построения такого многогранника необходимо, чтобы  число пятиугольных граней было равно  двенадцати, число же шестиугольных  граней может быть произвольно. Такому условию отвечают кластеры с числом атомов N = 32, 44, 50, 58, 60, 70, 72, 78, 80, 82, 84 и т.д. Наибольший интерес экспериментальных исследований представляет фуллерен С60 ввиду его наибольшей стабильности и высокой симметрии.

В настоящее время опубликовано множество экспериментальных и  теоретических работ, посвященных  различным аспектам физики С60 в различных  состояниях: изолированная молекула, С60 в растворах и особенно С60 в  твердотельном состоянии. При температурах ниже 600К С60 образует молекулярные кристаллы. Кристаллы высокой чистоты (99.98%) и миллиметровых размеров могут  быть выращены из газовой фазы. Будем  называть фуллеренами изолированные  молекулы Сn, фуллеритами – фуллерены в твердотельном состоянии, в том числе полимеризованные фуллереновые структуры. К многообразным фуллереновым производным относятся также интеркалированные соединения и эндоэдральные фуллерены. При интеркаляции примеси вводятся в пустоты уристаллической решетки фуллерита, а эндоэдральные фуллерены образуются при внедрении атомов различного сорта внутрь кластера Сn.

С химической точки зрения фуллерены могут рассматриваться  как трехмерные аналоги планарных  ароматических соединений, но с той  существенной разницей, что сопряжение п-элетронной системы непрерывно. Фуллерены не содержат водорода, который может участвовать в реакции замещения. Химический реакции с фуллеренами могут быть двух типов: реакции присоединения и окислительно-восстановительные, приводящие соответственно к ковалентным экзоэдральным соединениям и солям. Если найти химическую реакцию, открывающую окошко в каркасе фуллерена, позволяющую впустить туда некий атом или небольшую молекулу и вновь восстанавливающую соединение кластера, получится красивый метод получения эндоэдральных фуллеренов. Однако большинство эндоэдральных металлофуллеренов в настоящее время производятся либо в процессе формирования фуллеренов в присутствии чужеродного вещества, либо путем имплантации.

 

Структура фуллерена C60

В молекуле С60 атомы углерода связаны между собой ковалентной  связью. Такая связь осуществляется обобществлением валентных (внешних) электронов атомов. Каждый атом углерода в молекуле С60 связан с тремя другими  атомами, образуя при этом правильные пятиугольники (их 12) и неправильные шестиугольники (их 20). Длина связи  С-С в пентагоне составляет 1,43Б (1Б = см), такая же длина стороны гексагона, являющейся общей для обеих фигур, но сторона, общая для двух гексагонов, имеет длину около 1,39Б.

Фуллерен имеет форму, которая называется усеченным икосаэдром. Этот многогранник имеет высокую симметрию, наиболее близкую к сферической, поэтому молекулу С60 можно рассматривать как сферическую оболочку. Толщина этой оболочки составляет приблизительно 1Б, а ее радиус 3,6Б.

При определенных условиях молекулы С60 упорядочиваются в пространстве, располагаясь в узлах кристаллической решетки, или, говорят, фуллерен образует кристалл. Для того чтобы молекулы С60 регулярным образом расположились в пространстве, они, как и атомы молекул, должны быть связаны между собой. Между молекулами фуллерена в кристалле существует слабая связь, называемая ван-дер-ваальсовой (по имени голландского ученого Ван-дер-Ваальса). Эта связь обусловлена тем, что в электрически нейтральной молекуле отрицательный заряд электронов и положительный заряд ядра разнесены в пространстве, в результате чего молекулы могут поляризовать друг друга, то есть приводить к смещению в пространстве центров положительного и отрицательного зарядов, что приводит к их взаимодействию.

При комнатной температуре (приблизительно 300 К) молекулы фуллерена  образуют гранецентрированную кубическую (ГЦК) кристаллическую решетку с  расстоянием между атомами 10,04Б и постоянной решетки a = b = c = 14,2Б. Поскольку силы взаимодействия между молекулами С60 в кристалле малы, а симметрия очень высока, то при температуре выше 260 К молекулы фуллерена вращаются и к ним вполне применима отмеченная выше модель шарового слоя. Именно так выглядят молекулы С60 при исследовании рассеяния рентгеновских лучей или нейтронов. Частота вращения, разумеется, зависит от температуры и при Т = 300 К равна приблизительно 1012 . При понижении температуры (Т 260 К) вращение молекул фуллерена прекращается. При Т = 260 К происходит изменение кристаллической структуры фуллерена (фазовый переход 1-го рода) с одновременным замораживанием вращательного движения молекул вследствие увеличения энергии межмолекулярного взаимодействия. Так называемая низкотемпературная фаза фуллерена имеет примитивную кубическую (ПК) решетку. Об увеличении взаимодействия между молекулами свидетельствует повышение частоты колебаний атомов в кристаллической решетке, подобно тому как увеличивается собственная частота колебаний грузика определенной массы на пружине при увеличении жесткости пружины.

Фуллериды щелочных металлов А3С60 (А = К, Rb, Cs) также имеют гранецентрированную кубическую решетку, в то время как А6С60 - объемно-центрированную кубическую решетку. В фуллеридах отсутствуют низкотемпературный фазовый переход и вращение молекул С60 при высоких температурах, поскольку связь молекул фуллерена с атомом металла практически чисто ионная, то есть щелочной металл отдает один валентный электрон молекуле С60. Так что молекула становится отрицательно заряженной (), а металлический ион приобретает положительный заряд (А+), и между ними возникает электростатическое (кулоновское) взаимодействие. Подобный тип связи реализуется, например, в кристаллах NaCl. Ионная связь гораздо сильнее ван-дер-ваальсовой, поэтому возможные формы движения молекул фуллерена ограниченны.

Элементарная ячейка ГЦК-решетки фуллерена (то есть наименьшая часть кристаллической решетки, повторением которой можно воспроизвести весь кристалл) содержит восемь тетраэдрических и четыре октаэдрические пустоты (межузлия). В первом случае центр межузлия окружен четырьмя молекулами С60, находящимися в вершинах тетраэдра, во втором - шестью, находящимися в вершинах октаэдра. Октаэдрические пустоты, или межузлия, больше по объему тетраэдрических, поэтому атомы металла прежде всего занимают их. На элементарную ГЦК-ячейку приходятся четыре молекулы фуллерена. При этом необходимо учитывать, что молекулы в вершинах куба - их всего восемь - только на 1/8 принадлежат данной элементарной ячейке, а шесть атомов в центре граней куба - на 1/2. В результате получаем N = 8 " 1/8 + 6 " 1/2 = 4. Следовательно, заполнение атомами только октаэдрических пустот должно приводить к фуллериду состава АС60 . Если же заполняются все пустоты, включая тетраэдрические, то состав должен соответствовать формуле А3С60 . Эти простые соображения подтверждаются на опыте.

В ячейке (ГЦК) фуллерена имеются четыре межузлия октаэдрической симметрии и восемь - тетраэдрической. При подсчете числа межузлий следует пользоваться тем же методом, который изложен выше для подсчета числа атомов в элементарной ячейке, то есть одно октаэдрическое межузлие находится в центре куба и целиком принадлежит данной элементарной ячейке, в то время как другие, расположенные в центре ребер куба принадлежат данной ячейке только на 1/4 и число таких межузлий, приходящихся на данную ячейку, оказывается 12 " 1/4 = 3, то есть всего 1 + 3 = 4. Тетраэдрических межузлий, имеющих координаты (1/4a, 1/4b, 1/4c); (3/4a, 3/4b, 3/4c) и т.д., всего восемь, и они все находятся внутри ГЦК элементарной ячейки. Октаэдрические пустоты имеют больший объем, поэтому в первую очередь атом металла занимает именно эти межузлия, не оказывая существенного воздействия на параметры решетки фуллерена. Если все октаэдрические пустоты заполняются, то это будет соответствовать составу АС60. Если бы была возможность заполнить только тетраэдрические пустоты, мы получили бы соединение А2С60, но трудно представить, что атомы металла будут заполнять только тесные тетрамежузлия, оставляя пустыми просторные октаэдрические. Наконец, если заполнить все межузлия атомами металла, то получим соединение А3С60. Дальнейшее увеличение атомов металла приводит к перестройке кристаллической структуры, при этом устойчивым соединением, как указывалось, является А6С60 . Это не означает, что индекс n металла может принимать только значения, равные 1, 3, 6. Просто с этими значениями n получаются упорядоченные кристаллические структуры или, говорят, стехиометрические составы металлофуллеренов. Может оказаться и так, что при полностью занятых октаэдрических межузлиях атомы металла (сверхстехиометрические) занимают часть тетраэдрических. В этом случае можно говорить о дефектных кристаллах АС60 или А3С60 в зависимости от того, какая часть тетраэдрических межузлий (меньше или больше половины) занята атомами металла.

Таким образом, фуллерен и его производные - фуллериды имеют широко распространенные в мире неорганических минералов кристаллические решетки, что значительно облегчает анализ их свойств по сравнению с другими органическими материалами.

Отметим, что существуют фуллерены  С70 , С72 , С78 , С82, теоретически предсказана  возможность существования кристаллов, состоящих из молекул С168 , С192 , С216 и с более высоким числом атомов углерода в молекуле.

 

Электронная структура и сверхпроводимость  металлофуллеренов

Чистый фуллерен при комнатной  температуре является изолятором с  величиной запрещенной зоны более 2 эВ или собственным полупроводником  с очень низкой проводимостью. Известно, что в твердых телах электроны  могут иметь энергию только в  определенных интервалах ее значений - в зонах разрешенных энергий, которые образуются из атомных или  молекулярных энергетических уровней. Зоны разрешенных значений энергий  разделены зонами запрещенных значений энергий, которые электроны не могут  иметь. Нижняя зона, как правило, заполняется  электронами, участвующими в образовании  химической связи между атомами  или молекулами, и поэтому часто  называется валентной зоной. Выше ее лежит запрещенная зона, затем  следует пустая или не полностью  заполненная зона разрешенных энергий, или зона проводимости. Она получила название от того, что в ней всегда существуют пустые электронные состояния, по которым электроны могут перемещаться (дрейфовать) в электрическом поле, осуществляя таким образом перенос заряда или, иначе говоря, обеспечивая протекание электрического тока (проводимость твердого тела).

Диаграмма энергетических уровней  изолированной молекулы С60 схематически показана на рисунке 2. Колебательные состояния, связанные с каждым электронным состоянием, лежат выше соответствующего бесколебательного уровня на энергию (E), равную целому числу квантов энергии колебаний. Поглощение и испускание света между основным состоянием и первым возбужденным синглетным состоянием должны отсутствовать из-за того, что такие переходы запрещены по соображениям симметрии. Поэтому оптические переходы между этими состояниями могут происходить только при участии фононов.

 

Рисунок 2. Диаграмма энергетических уровней изолированной молекулы С60.

Фуллериды щелочных металлов, имеющие состав А3С60 , становятся сверхпроводящими при температуре ниже определенного значения ТC - температуры фазового сверхпроводящего перехода. При этом составе фуллерида зона проводимости заполнена электронами наполовину. Температура фазового перехода зависит от постоянной решетки фуллерида. Максимальная температура ТC для фуллеридов щелочных металлов немного выше 30 К, но для сложного состава Rb-Tl-C60 она превышает 40 К, и есть основание предполагать, что пока неидентифицированный по составу фуллерид меди имеет значение ТC , равное 120 К. Таким образом, металлофуллерены являются высокотемпературными сверхпроводниками. В отличие от сложных оксидов меди это изотропные сверхпроводники, то есть параметры сверхпроводящего состояния оказываются одинаковыми по всем кристаллографическим направлениям, что является следствием высокой симметрии кубической кристаллической решетки фуллерена.

Существует сильная корреляция между кристаллической структурой пленок С60 и их оптическими и электрическими свойствами. Но найти этому объяснение не так просто. Поскольку молекулы связаны ван-дер-ваальсовыми связями, сама по себе дефектная кристаллическая структура не приводит к появлению оборванных связей. Требуется нарушение целостности самой молекулы. Однако известно, что с увеличением кристалличности пленок увеличивается их проводимость, причем активационная энергия падает. Неоднократно отмечалось, что чем выше температура подложки, на которую осаждались фуллеритовые пленки (что способствует их структурному совершенству), тем выше проводимость. Отжиг в динамическом вакууме сильно влияет на проводимость пленок C60, имеющих беспорядочную доменную структуру. У таких пленок проводимость при комнатной температуре составляет 6 • 10^-10(Ом • см)^-1. В температурной зависимости проводимости при температурах выше 423 К наблюдается активационное поведение, причем энергия активации растет с увеличением толщины пленки (0.8 и 1.0 эВ для разных толщин), но находится в строгом соответствии с величиной запрещенной зоны, полученной из спектров поглощения (1.63 и 2.08 эВ). При более низких температурах доминирует неактивационное поведение, причем его доля уменьшается вследствие отжига. Рентгенофазовый анализ показал, что при комнатной температуре ГЦК -фаза в пленках соседствует с гексагональной плотной упаковкой (ГПУ). При измерениях временной зависимости проводимости пленок при постоянной повышенной температуре обнаружены снижение содержания ГПУ-фазы и увеличение проводимости. Отжиг пленок при высоких температурах приводит к их упорядочению, уменьшению дефектных состояний в зоне и увеличению энергии активации.

Проводимость монокристалла  на переменном токе пропорциональна  температуре и частоте при  температурах измерения ниже 150 К, что характерно для прыжков в локализованных состояния вблизи уровня Ферми. Выше 200 К наблюдаются быстрое возрастание проводимости и переход к термически активированному типу с энергиями активации 0.389 и 0.104 эВ выше и ниже некоторой температурной точки, что объясняется сосуществованием кристаллической и аморфной фаз. Частотная зависимость проводимости подчиняется степенному закону w^s(s = 0.8). Сходные результаты были получены на пленках С60 и С70: при высокой температуре проводить не зависела от частоты, в то время как степенной закон наблюдался при низких температурах. Можно сделать вывод, что при повышении температуры преобладающий механизм меняется от прыжковой проводимости к термической активации. Таким образом, при высоких температурах как в пленках, так в монокристаллах фуллерита 2Ea = 1.85 эВ с не зависящим от частоты значением энергии активации. При низких температурах проводимость частотно-зависимая и слабо зависящая от температуры, что объясняется влиянием примесей. При температуре 425 К наблюдается уменьшение проводимости монокристалла С60, что объясняется перераспределением молекул, приводящим к локализации электронных состояний.

Информация о работе Свойства фуллеренов