Форсунки и корпуса форсунок дизельных двигателей

Автор работы: Пользователь скрыл имя, 01 Апреля 2014 в 19:37, лекция

Краткое описание

Форсунки и их корпуса служат в качестве соединительного элемента между насосом подачи топлива и двигателем.
Их основными функциями являются: участие в дозировании топлива; распыливание топлива; обеспечение характеристик впрыскивания; герметизация камеры сгорания.

Вложенные файлы: 1 файл

Форсунки и корпуса форсунок дизельных двигателей.docx

— 66.79 Кб (Скачать файл)

Форсунки и корпуса форсунок дизельных двигателей

 Функции

 

Форсунки и их корпуса служат в качестве соединительного элемента между насосом подачи топлива и двигателем.

Их основными функциями являются: участие в дозировании топлива; распыливание топлива; обеспечение характеристик впрыскивания; герметизация камеры сгорания.

 

Дизельное топливо впрыскивается при максимальных величинах давления порядка 1200 бар, значения которых в будущем, вероятно, будут еще выше. В этих условиях дизельное топливо перестает вести себя как сплошная несжимаемая жидкость и становится сжимаемым. Во время короткого времени подачи (в пределах 1 мс) топливо в системе высокого давления как бы сжимается - поперечное сечение соплового отверстия форсунки определяет количество топлива и распределение его в камере сгорания двигателя.

В соответствии с длиной, диаметром отверстия и его направлением форсунка оказывает основное влияние на образование факела топлива с соответствующими изменениями показателей мощности, расхода топлива и токсичности отработавших газов двигателя.

В определенных пределах возможно обеспечить оптимальное управление, определяемое ходом запорной иглы форсунки и регулированием ее характеристики.

Распылительное сопло должно обеспечивать герметичность системы впрыскивания топлива при чрезмерном нагреве до температур порядка 1000°С и при высоком давлении газов в камере сгорания двигателя. Для предупреждения противотока горящих газов, когда сопла форсунки все еще открыты, давление в камере повышенного давления форсунки должно быть выше, чем давление в камере сгорания. Это требование становится особенно важным в конце впрыскивания (когда уменьшение давления впрыска сопровождается чрезмерным возрастанием давления продуктов сгорания). Оно может быть обеспечено только тщательным согласованием работы насоса впрыскивания топлива, распылительного сопла и запорной иглы.

 

Конструкции

 

Конструкции Дизели с разделенными камерами сгорания (предкамерами и вихревыми камерами) требуют разработки форсунок, отличающихся от используемых в неразделенных камерах сгорания. Для данных камер сгорания используются закрытые форсунки (с запорной иглой), имеющие распылитель с одним отверстием и обычно оснащенные иглами, открывающими одно отверстие. Двигатели с непосредственным впрыскиванием топлива с неразделенными камерами сгорания обычно требуют применения форсунок со многими распылительными отверстиями.

 

Дроссельно-игольчатые форсунки

Один распылитель (тип DN..SD..) и один корпус форсунки (тип КСА с резьбовым соединением) обычно используются в двигателях с предкамерой и вихревой камерой. Стандартный корпус форсунки имеет резьбу М 24х2 и отворачивается 27-миллиметровым гаечным ключом.

Форсунки DN 0 SD в основном имеют диаметр иглы 6 мм с нулевым углом факела. Применяются и распылители с коническим углом факела (например, 12° для DN 12 SD..). Когда пространство для установки форсунок ограничено, то используются корпуса меньших размеров (например, КСЕ).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Штифтовой распылитель: 1 - нажимной штифт; 2 - распылитель; 3 - игла; 4 - впускной канал; 5 - камера сжатия; 6 - распылительное отверстие; 7 - штифт распылителя

 

 

 

 

 

 

 

Отличительной характеристикой штифтовых форсунок является изменение отверстия распылителя (и, следовательно, скорости потока) в виде функции хода иглы.

Сопло в виде распылительного отверстия показывает немедленное возрастание проходного сечения во время открытия иглы. Штифтовые форсунки характеризуются очень плавным ростом сечения при средних величинах хода иглы. В пределах этого диапазона хода штифт иглы остается в распыливающем отверстии. Пропускное отверстие для потока состоит только из небольшого углового зазора между отверстием распыления большего размера и штифта иглы. При возрастании хода иглы она полностью открывает отверстие распылителя с последующим существенным возрастанием размера отверстия.

Это изменение отверстия, чувствительного к длине хода, может использоваться для организации в определенной степени управления законом впрыскивания.

В начале впрыскивания из форсунки в камеру сгорания вводится только ограниченное количество топлива, а основная его часть подается в конце цикла. Такая последовательность впрыскивания снижает жесткость процесса сгорания.

При малом сечении отверстия и излишне малом ходе иглы ускоряется возвращение иглы из зоны дросселирования. Впрыскиваемое количество топлива, приходящееся в единицу времени, резко возрастает, и, соответственно, повышается жесткость процесса сгорания.

Подобное влияние оказывается при использовании чрезмерно малых отверстий в конце цикла впрыска топлива - объем, перемещаемый закрывающейся иглой форсунки, ограничивается более узким отверстием. Результат - увеличение продолжительности такта впуска топлива. Таким образом, конфигурация отверстия должна точно соответствовать закону подачи топлива насосом с учетом специфических условий процесса сгорания топлива.

Во время работы двигателя в дросселирующем зазоре происходит коксование (отложение нагара). Уровень формирования отложения определяется качеством топлива и условиями работы двигателя. В большинстве случаев для прохода топлива остается только 30-процентное сечение по отношению к исходному. Значительно меньшие и более ровные отложения обнаруживаются на плоских игольчатых форсунках, в которых кольцевое отверстие между корпусом форсунки и штифтом почти равно нулю. Уменьшение площади пропускного сечения потока способствует повышению эффекта самоочищения.

Температуры свыше 220°С ускоряют образование нагара на форсунках. Для предотвращения этого явления применяются тепловые экраны, передающие тепло от камеры сгорания к головке блока цилиндров.

Для выполнения отверстий распыления, которые бы соответствовали точным геометрическим допускам,используются наиболее совершенные технологии.

 

Многоструйные распылители

Для форсунок этого типа имеются разнообразные комплекты распылителей (DHK). В противоположность штифтовым, многоструйные распылители обычно устанавливаются в заранее заданном положении для обеспечения правильного соотношения между угловым расположением сопловых отверстий и камерой сгорания двигателя. По этой причине для установки комплекта, включающего форсунку и корпус, в головке блока цилиндров обычно используются выступы или банджо-болты, а дополнительное винтовое удерживающее устройство обеспечивает необходимую ориентацию. Многодырчатые форсунки используют диаметры игл 6 и 5 мм (размерность S) и 4 мм (размерность Р). Пружины форсунок должны соответствовать различным диаметрам игл и предельным величинам давлений во время открытия (>180 бар).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Многоструйный распылитель: 1 - нажимной штифт;

2 - распылитель; 3 - игла распылителя: 4 - впускной канал; 5 - камера высокого  давления; 6 - распыливающее отверстие; 7 - закрытый объем; 8 - угол между распыливающими отверстиями

 

 

 

В конце впрыскивания существует опасность засасывания в форсунку продуктов сгорания, поэтому необходимо предотвращать нестабильность гидравлических процессов. Диаметр запорной иглы и ее пружина должны тщательно подбираться с целью обеспечения надежной герметизации топливной форсунки. Существуют три различных варианта

 

закрытого объема в концевом конусе форсунок многодырчатого типа: конический закрытый объем, цилиндрический закрытый объем и запираемые отверстия. В зависимости от типа распыливающего отверстия, в конце

впрыскивания топлива в форсунке остается некоторый заданный объем топлива, который затем испаряется и в камеру сгорания попадают пары топлива. Этот объем уменьшается в следующем порядке в зависимости от выбираемых вариантов форсунок: штифтовая форсунка, форсунка с запираемыми отверстиями и плоско-игольчатая форсунка. Выпуск углеводородов в составе отработавших газов двигателя уменьшается в том же порядке в зависимости от уровня испарения топлива.

Длина распылительного отверстия ограничивается механической прочностью конуса форсунки. В настоящее время минимальная длина соплового отверстия впрыска топлива составляет 0,6...0,8 мм для цилиндрических и конических закрытых объемов. Для форсунок с запираемыми объемами допустима длина соплового отверстия 1 мм, но только в том случае, когда для производства распылительных отверстий используются специальные методы обработки.

Тенденцией является уменьшение длины отверстия, так как это позволяет в основном обеспечивать лучший контроль над снижением дымности отработавших газов. Для обеспечения допусков по пропускной способности в пределах ±3,5% для форсунок многодырчатого типа может быть использован процесс сверления. Дополнительные прецизионные процедуры (например, гидроэрозионная обработка) могут применяться в пределах допусков ±2% для конкретных случаев применения. Однако термостойкость материалов ограничивает максимальные температуры для однодырчатых форсунок приблизительно до 270°С. Во время работы в особо трудных условиях следует иметь в распоряжении термозащитные втулки, а также охлаждаемые топливные форсунки для двигателей с большим рабочим объемом.

 

 

 

Формы распылителей: 1 - штифтовой распылитель;

2 - штифтовой распылитель  с плоскоусеченной иглой: 2а - вид сбоку; 2b - вид спереди; 3 - многоструйный распылитель с коническим закрытым объемом; ; 4 - многоструйный распылитель с цилиндрическим закрытым объемом; 5 - распылитель с перекрываемыми отверстиями

 Насос-форсунка (пьезо и электро)

"победном шествии" систем непосредственного впрыска топлива говорить не будем - наговорились. Поговорим о небольшой конкретике: о насосе-форсунке, которые уже успешно применяет не только фирма Mitsubishi, но и BOSCH. Для наглядности посмотрим на фото:

< img>

Здесь показаны насос-форсунки разных поколений, если так можно сказать. Слева - "вчерашний день", это насос-форсунка с электромагнитным клапаном. Справа "день сегодняшний", насос-форсунка с пьезоэлектрическим клапаном модели PPD 1/1.

Именно о ней и поговорим. Но для начала приведем сравнительные характеристики этих двух типов форсунок, откуда станет понятным причина перехода на насос-форсунки нового поколения.

За счет применения композитных материалов и уменьшения размеров плунжера повышено быстродействие и точность работы: диаметр плунжера в НФ ( насос-форсунке) с электромагнитным клапаном=8мм, а в НФ с пьезоэлектрическим клапаном диаметр плунжера намного меньше и равняется 6.35мм.

Но не это главное, другое: быстродействие пьезоэлектрического клапана в 3 - 5 раз превосходит быстродействие клапана с электромагнитным управлением.

Как мы знаем, система управления таких насос-форсунок может предусматривать несколько так называемых "дополнительных впрысков". Так вот, НФ электромагнитного типа может осуществлять их до 2 едениц.

НФ пьезоэлектрического типа - тоже, но с таким приятным "нюансиком" - время и количество дополнительных впрысков топлива может варироваться как по числу, так и по времени:

< img>

,- то есть, система управления  теперь может управлять и количествами  дополнительного впрыска топлива  и временем между ними, в зависимости  от условий работы двигателя. Если по условиям работы требуется  после основного впрыска сделать  только один дополнительный впрыск - так и делается. Если больше - это тоже в силах системы  управления. Кроме того, если по  тем же условиям работы требуется  сократить или удлиннить временной разрыв между дополнительными впрысками - система управления способна это осуществить.

"Пилотный впрыск".

Насос-форсунка электромагнитного типа в силу своих конструктивных особенностей практически не способна изменить объем топлива для "пилотного" впрыска , он равняется приблизительно от 1 до 3 мм3. Насос-форсунка пьезоэлектрического типа стала "умнее", и в зависимости от требуемых условий может менять объем "пилотного"впрыска, правда, с одним только ограничением - минимальный объем может составлять не менее 0.5 мм3.

Кроме того, если НФ электромагнитного типа может осуществлять только один "пилотный" впрыск, то НФ пьезоэлектрического типа в зависимости от условий работы может делать их до 2 едениц, и притом - изменяемых по времени и объему.

Точность и, значит, качество работы определяется еще и условиями управления подачей топлива. НФ электромагнитного типа для этого использует гидромеханику, при помощи компенсанционного поршня, а НФ пьезоэлектрического типа использует электронное управление посредством пьезоэлектрического клапана.

Ну вот, теперь мы подошли к самой конкретике - к самому пьезоэлектрическому клапану.

Греческий язык нам подсказывает, что слово "пьезо" означает "давить, давлю". Обычно пьезоэлементы применяются в датчиках давления.

При воздействии давления на обкладках пьезоэлемента появляется разность потенциалов, которую можно измерить и использовать при дальнейших расчетах. В нашем же случае применяется так называемый "обратный пьезоэффект", когда при приложении напряжения к пьезоэлементу изменяются его геометрические размеры:

< img>

(металические обкладки на рисунке не показаны)

При отсутствии напряжения пьезоэлемент имеет один геометрический размер, при подаче на него напряжения - другой.

Приращение (изменение) длины пьезоэлемента прямо пропорционально прилагаемому напряжению:

< img>

Разбирающийся в электронике человек сразу же задаст такой вопрос: - Уважаемый, а насколько произойдет приращение длины пьезоэлемента при подаче на него напряжения? Хватит ли этого приращения для управления чем-либо? И хитро так улыбнется. Все правильно, не хватит. Толщина одного элемента пьезопривода приблизительно равняется 0.08мм, а приращение составит всего около 0.11 - 0.16%. Этого мало. И поэтому, например, что бы получить перемещение около 0.05мм требуется делать "наборный блок" из пьезоэлементов. Такие блоки получили название PIEZO-STACK, где отдельные пьезоэлементы разделены между собой металическими прокладками, служащими для подвода к ним напряжения.

Но и этого - мало! "Рабочий" ход пьезопривода приблизительно равняется 0.05мм. Нам же по техническим условиям нужно иметь ход перемещения около 0.09 - 1.1мм. Для "выравнивания" этого несоответствия и был придуман так называемый рычажной мультипликатор со специально подобранным передаточным отношением. Все, теперь "механическая" задача решена, дело осталось за малым: создать требуемое электронное управление для всего этого придуманного.

Информация о работе Форсунки и корпуса форсунок дизельных двигателей