Влияние тяжелых металлов на формирование проростка ячменя

Автор работы: Пользователь скрыл имя, 24 Октября 2014 в 21:15, курсовая работа

Краткое описание

На всех стадиях своего развития человек был тесно связан с окружающим миром. Но с тех пор как появилось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилось, расширился объём этого вмешательства, оно стало многообразнее и сейчас грозит стать глобальной опасностью для человечества. Расход невозобновимых видов сырья повышается, все больше пахотных земель выбывает из экономики, так на них строятся города и заводы. Человеку приходится все больше вмешиваться в хозяйство, биосферы - той части нашей планеты, в которой существует жизнь. Биосфера Земли в настоящее время подвергается нарастающему антропогенному воздействию.

Вложенные файлы: 1 файл

влияние тяж мет ячмен.docx

— 68.02 Кб (Скачать файл)

Оценка и прогнозирование состояния природной среды с привлечением позвоночных животных проводится на всех уровнях их организации. На организменном уровне с помощью сравнительного анализа оцениваются морфо-анатомические, поведенческие и физиолого-биохимические показатели [4].

Микроорганизмы в качестве биоиндикаторов.

Микроорганизмы - наиболее быстро реагирующие на изменение окружающей среды биоиндикаторы. Их развитие и активность находятся в прямой связи с составом органических и неорганических веществ в среде, так как микроорганизмы способны разрушать соединения естественного и антропогенного происхождений. На этом основаны принципы биоиндикации с использованием микроорганизмов. Необходимо иметь сведения о составе, количестве и функциональной активности последних.

При прямом микроскопировании, например воды, количество обнаруживаемых микроорганизмов оказывается небольшим, поэтому для изучения морфологического разнообразия и оценок их общего числа в единице объема проводят концентрирование пробы. Для фильтрации воды используют фильтры Зейтца или иной конструкции с размером пор 0,35; 0,5; 0,23; 0,3; 0,4 мкм. Объем фильтруемой воды может быть от 10 до 20 мл в зависимости от типа водоема. Для подсчета численности микроорганизмов фильтр прокрашивают, переносят на предметное стекло в каплю иммерсионного масла и микроскопируют с перемещением сетчатого микрометра. Просчитывается 20 полей зрения; в каждом поле зрения должно быть не менее 50 микробов.

Число колониеобразующих клеток бактерий в 1 мл воды (N) рассчитывают по формуле:

N = Kn/V

где К = S/S1 (S - площадь фильтра, мкм2; S1 - площадь, на которой просчитываются клетки, мкм2); n - среднее число бактерий в одном поле зрения; V - объем профильтрованной воды, мл. Для определения биомассы бактерий необходимо определить размер клеток с помощью микрометра.

Выявление микроорганизмов и их учет можно произвести путем высева проб в жидкие и агаризованные питательные среды. Для учета сапрофитов используют мясопептонный агар, олиго-трофных бактерий выращивают на агаризованной воде из исследуемого водоема.

Чаще всего для оценки качества вод используют показатель микробного числа - это число клеток аэробных сапрофитных организмов в 1 мл воды. В водопроводной воде согласно ГОСТ микробное число не должно превышать 100. В чистых водоемах число сапрофитов может исчисляться десятками и сотнями, а в загрязненных и грязных водоемах этот показатель достигает сотен тысяч и миллионов.

Помимо микробного числа используются данные по видовому составу микроорганизмов. В полисапробной зоне наблюдается массовое развитие нитчатых бактерий. В загрязненной фекалиями воде высок коли-индекс, характеризующий наличие в среде энтеро-бактерий Escherichia coli - условных патогенов и постоянных обитателей кишечника человека и животного. Определение коли-ин-декса ведется в среде Эндо (фуксин-сульфатный агар) подсчетом колоний E.coli. Иногда делают пересчет, определяя коли-титр - наименьший объем воды (в мл), содержащий одну кишечную палочку. Коли-титр = 1000/коли-индекс [9].

Симбиотические методы в биоиндикации.

Симбиоз широко распространен в природе и симбиотические ассоциации часто играют ключевую роль в поддержание нормального функционирования наземных пресноводных и морских экосистем. Симбиоз грибов и азотофиксирующих бактерий с высшими растениями и водорослей с грибами обеспечил процветание этих ассоциаций в наземной среде. Лишайники, симбиотическая ассоциация грибов и водорослей, очень чувствительны к качеству среды и уже давно используются как традиционные биомаркеры состояния атмосферного воздуха. Мадрекоровые кораллы - симбиоз одноклеточных водорослей зооксантелл с кишечнополостными животными, определяющий важную ландшафтообразующию роль этой ассоциации в тропических морях.

Все более значительной признается роль симбиотических микроорганизмов в трофике почти всех видов организмов. Прямо или косвенно регулируя численность своих хозяев, симбионты оказывают существенное влияние на их динамику и структуру популяции. Биоразнообразие симбионтов, как правило, превышает разнообразие их хозяев.

Помимо уточнения оценки биоразнообразия по числу видов, учет симбионтов позволяет получать достоверную информацию о качестве среды, т.к. степень интенсивности инвазии (относительное количество хозяев, имеющих симбионтов) и экстенсивной инвазии (среднее количество симбионтов на хозяине) напрямую зависит от условий, в которых находится популяция хозяев. Многие симбионты чувствительны к изменению внешней среды, в частности симбионты водных организмов - к загрязнению и опреснению, и симбионты наземных организмов - к радионуклидам. При оценке разнообразной фауны симбионтов широко используют статические методы. Учет симбиотических, в том числе и паразитических организмов, а также исследование соответствия симбиотических ассоциаций позволяют более точно оценивать биоразнообразие и характер динамических процессов в экосистемах и могут быть рекомендованы в качестве важных элементов экодиагностических исследований [15].

1.2.4 Область применения биоиндикаторов

Оценка качества воздуха.

Как известно, воздух представляет собой смесь определенных газов, повсюду на Земле представленных приблизительно в равных объемных долях. Загрязнение воздуха имеет место в том случае, если в смеси имеются вещества в таких количествах и так долго, что создают опасность для человека, животных, растений или имущества. От загрязнения воздуха страдают все живые организмы, но особенно растения. По этой причине растения, в том числе низшие, наиболее пригодны для обнаружения начального изменения состава воздуха. Соответствующие индексы дают количественное представление о токсичном эффекте загрязняющих воздух веществ.

Лишайники являются симбиотическими организмами. Многими исследователями показана их пригодность для целей биоиндикации. Они обладают весьма специфическими свойствами, так как реагируют на изменение состава атмосферы, обладают отличной от других организмов биохимией, широко распространены по разным типам субстратов, начиная со скал и кончая корой и листьями деревьев, удобны для экспозиции в загрязненных районах.

Выделяют четыре основные экологические группы лишайников: эпифитные - растущие на коре деревьев и кустарников; эпи-ксилъные - растущие на обнаженной древесине; эпигейные - на почве; эпилитные - на камнях. Из них наиболее чувствительны к загрязнению воздуха эпифитные виды. С помощью лишайников можно получать вполне достоверные данные об уровне загрязнения воздуха. При этом можно выделить группу химических соединений и элементов, к действию которых лишайники обладают сверхповышенной чувствительностью: оксиды серы и азота, фто-ро- и хлороводород, а также тяжелые металлы. Многие лишайники погибают при невысоких уровнях загрязнения атмосферы этими веществами. Процедура определения качества воздуха с помощью лишайников носит название лихеноиндикации.

Оценку чистоты воздуха можно проводить с помощью высших растений. Например, голосеменные - отличные индикаторы чистоты атмосферы. Возможно также изучение мутаций в волосках тычиночных нитей традесканции. Французские ученые подметили, что при увеличении в воздухе окиси углерода и окислов азота, выбрасываемых двигателями внутреннего сгорания, окраска ее тычиночных нитей меняется от синей к розовой. Последствия нарушений в индивидуальном развитии растений могут быть выявлены также по частоте встречаемости морфологических отклонений (фенодевиантов), величине показателей флуктуирующей асимметрии (отклонение от совершенной билатеральной и радиальной симметрии), методом анализа сложноорганизован-ных комплексных структур (фрактал-анализ). Уровни любых отклонений от нормы оказываются минимальными лишь при оптимальных условиях и возрастают при любых стрессирующих воздействиях [9].

Оценка качества воды.

В своем естественном состоянии различные природные водоемы могут сильно отличаться друг от друга. На водную флору и фауну действуют такие показатели, как глубина водоема, скорость течения, кислотно-щелочные свойства воды, мутность, кислородный и температурный режим, количество растворенной органики, соединений азота и фосфора, и многие другие. На все эти параметры влияет как антропогенная нагрузка, так и естественные процессы, происходящие в водоемах. Для водоемов разных типов в норме будет характерен разный видовой состав и обилие водных организмов (гидробионтов).

Оценка качества воды водоемов и водотоков может быть проведена с использованием физико-химических и биологических методов. Биологические методы оценки - это характеристика состояния водной экосистемы по растительному и животному населению водоема [4].

Любая водная экосистема, находясь в равновесии с факторами внешней среды, имеет сложную систему подвижных биологических связей, которые нарушаются под воздействием антропогенных факторов. Прежде всего, влияние антропогенных факторов, и в частности, загрязнения отражается на видовом составе водных сообществ и соотношении численности слагающих их видов. Биологический метод оценки состояния водоема позволяет решить задачи, разрешение которых с помощью гидрофизических и гидрохимических методов невозможно [18].

Для того чтобы оценить уровень токсического загрязнения водного объекта промышленным или иными сторонами нужно ответить на вопросы: токсична или исходна вода, поступающая в водоем со сточными водами; какова степень ее токсичности; на каком расстояние от источника загрязнения токсичность снижается до минимального значения.

В качестве эквивалента было использовано разведение сточной жидкости, при котором еще наблюдается повреждающий эффект по примененному биотесту. Ориентируясь как на основной показатель токсичности химических веществ, где гидробионтов по величине медиальной летальной концентрации, принятую в общей токсикологии для теплокровных животных. Н. П. Строганов предложил количественное определение токсичности для величины, обратной медиальной летальной концентрации, устанавливаемой в 48 - часовом опыте:

Т=1/LC 4550

Для биологической индикации качества вод могут быть использованы практически все группы организмов, населяющих водоемы: планкторы, микрофиты, бентоносные позвоночные, простейшие водоросли, бактерии и рыбы. Каждые из них выступают в роли биологического индикатора и имеет свои преимущества и недостатки, которые определяют границы ее использования при решении задач биоиндикации, т.к. эти все группы играют ведущую роль в общем круговороте веществ в водоеме. Всякое заключение по результатам биологического исследования строится на основании совокупности всех получаемых данных, а не на основании единичных находок индивидуальных организмов. Как при выполнении исследования, так при оценке полученных результатов необходимо иметь в виду возможность случайных, местных загрязнений в точке наблюдения. Например, разлагающиеся растительные остатки, труп лягушки или рыбы могут вызывать местные изменения в характере населения водоема.

Наиболее разработанной оценкой степени загрязненности вод по индикаторным организмам является система сапробности.

Метод учитывает относительную частоту встречаемости гидробионтов (от 1 до 9 или от единичных экземпляров, например инфузорий, в поле зрения микроскопа и до очень частой встречаемости, когда их много в каждом поле зрения) и их индикационную значимость S. Для статистической достоверности результатов необходимо, чтобы в пробе содержалось не менее 12 видов индикаторных организмов одной зоны сапробности с Индикаторные значимости S для соответствующих зон сапробности табулированы для многих организмов. По рассчитанной величине S можно судить о состоянии водоема. Заключение о степени загрязненности воды дают обычно по системе баллов от одного до шести.

Высшие водные растения среди вышеуказанных групп организмов-индикаторов являются наименее изученным звеном, хотя имеют ряд преимуществ. Они представляют собой видимый невооруженным глазом и поэтому весьма удобный для наблюдения объект, а также дают возможность при рекогносцировочном гидробиологическом осмотре водоемов в первом приближении визуально оценить их экологическое состояние. Макрофиты позволяют определить трофические свойства воды, а иногда и специфику ее химизма, что имеет существенное значение при биоиндикации чистых вод [9].

Диагностика почв.

В основе принципа биологической диагностики почв лежит представление о том, что почва как среда обитания составляет единую систему с населяющими ее популяциями разных организмов.

Лучше других разработаны ботанические методы фитоиндикации и диагностики почв. Например, путем анализа состава и структуры растительных сообществ, распространения растений-индикаторов или определенных индикационных признаков у отдельных видов растений можно установить тип почвы, степень ее гидроморфизма, развитие процессов заболачивания, соленакопления и т.д. Среди растений обнаружены индикаторы на тот или иной механический и химический состав почв, степень обогащенности питательными элементами, на кислотность или щелочность, глубину протаивания мерзлотных почв или уровень грунтовых вод [19].

Теоретической предпосылкой применения почвенно-зоологи-ческого метода для целей диагностики почв является сформулированное М. С. Гиляровым в 1949 г. представление об «экологическом стандарте» вида потребности вида в определенном комплексе условий среды. Каждый вид в пределах своего ареала встречается только в тех местообитаниях, которые обеспечивают полный комплекс необходимых для проявления жизнедеятельности условий. Амплитуда варьирования отдельных факторов среды характеризует экологическую пластичность вида. Эврибионты мало пригодны для индикационных целей, тогда как стенобионты служат хорошими индикаторами определенных условий среды и свойств субстрата. Это положение представляет собой общий теоретический принцип в биологической диагностике. Однако использование для индикации одного вида не дает полной уверенности в правильности выводов (здесь имеет место «правило смены местообитаний» и как следствие смена экологических характеристик вида). Лучше исследовать весь комплекс организмов, из которых одни могут быть индикаторами на влажность, другие - на температуру, третьи - на химический или механический состав. Чем больше общих видов почвенных животных встречается на сравниваемых участках, тем с большей долей вероятности можно судить о сходстве их режимов, а следовательно, о единстве почвообразовательного процесса. Менее других полезны микроскопические формы - простейшие и микроартроподы (клещи, ного-хвостки). Их представители отличаются космополитизмом в силу того, что почва для них не выступает как единая среда обитания: они живут в системе пор, капилляров, полостей, которые можно найти в любой почве. Из микроартропод наиболее хорошо изучены индикаторные свойства панцирных клещей. Состав их комплексов сообществ зависит не только от почвенных условий, но и от характера и флористического состава растительности, поэтому данный объект перспективно использовать для индикации повреждающих воздействий на почву.

Информация о работе Влияние тяжелых металлов на формирование проростка ячменя