Физико-химические основы строения полимеров

Автор работы: Пользователь скрыл имя, 21 Октября 2015 в 10:45, реферат

Краткое описание

Пластмассы - материалы на основе органических природных, синтетических или органических полимеров, из которых можно после нагрева и приложения давления формовать изделия сложной конфигурации. Полимеры - это высоко молекулярные соединения, состоящие из длинных молекул с большим количеством одинаковых группировок атомов, соединенных химическими связями. Кроме полимера в пластмассе могут быть некоторые добавки.

Содержание

Введение
2. Физико-химические основы строения полимеров
2.1. Строение полимеров
2.2. Свойства полимеров
2.3. Пластические массы
2.3.1. Классификация пластмасс
2.3.2.Технологические свойства
2.3.3. Физико-химические основы переработки
2.3.4. Марочный ассортимент
3. Выбор пластмасс
3.1. Признаки выбора
3.2.Порядок выбора и алгоритм выбора
4. Способы изготовления деталей из пластмасс
4.1.Классификация способов
4.2. Способы горячего формования
4.2.1. Подготовка полимеров к переработке
4.2.2. Особенности формования аморфных полимеров
4.2.3. Особенности формования кристаллизующихся полимеров
4.2.4. Температурно-временная область переработки
4.2.5. Технологическая характеристика способов
горячего формования
4.3. Способы механической обработки
4.3.1. Особенности обработки
4.3.2. Технологическая характеристика способов обработки
5. Выбор способа изготовления детали
6. Технологичность конструкции детали

Вложенные файлы: 1 файл

КОЗАКОВА.docx

— 97.58 Кб (Скачать файл)

  МИНИСТЕРСТВО ОБРАЗОВАНИЯ  И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

СТЕРЛИТАМАКСКИЙ ФИЛИАЛ

ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Естественнонаучный факультет

Кафедра химии и химической технологии

 

 

 

 

 

РЕФЕРАТ

 

ПО ДИСЦИПЛИНЕ «ТЕХНОЛОГИЯ ПЕРЕРАБОТКИ ПОЛИМЕРОВ»

 

 

 

Выполнил:                                                 ГалиахметовА.З.

Проверил:             Казакова Е.В.

 

 

 

 

Стерлитамак 2014

Содержание

Введение

2. Физико-химические основы  строения полимеров

2.1. Строение полимеров 

2.2. Свойства полимеров 

2.3. Пластические массы 

2.3.1. Классификация пластмасс

2.3.2.Технологические свойства

2.3.3. Физико-химические основы  переработки

2.3.4. Марочный ассортимент

3. Выбор пластмасс

3.1. Признаки выбора 

3.2.Порядок выбора и алгоритм выбора

4. Способы изготовления деталей из пластмасс

4.1.Классификация способов 

4.2. Способы горячего формования

4.2.1. Подготовка полимеров к переработке

4.2.2. Особенности формования  аморфных полимеров

4.2.3. Особенности формования  кристаллизующихся полимеров

4.2.4. Температурно-временная  область переработки

4.2.5. Технологическая характеристика  способов 

горячего формования

4.3. Способы механической обработки

4.3.1. Особенности обработки

4.3.2. Технологическая характеристика  способов обработки

5. Выбор способа изготовления детали

6. Технологичность конструкции детали

 

 

Введение

Пластмассы - материалы на основе органических природных, синтетических или органических полимеров, из которых можно после нагрева и приложения давления формовать изделия сложной конфигурации. Полимеры - это высоко молекулярные соединения, состоящие из длинных молекул с большим количеством одинаковых группировок атомов, соединенных химическими связями. Кроме полимера в пластмассе могут быть некоторые добавки.

Переработка пластмасс - это совокупность технологических процессов, обеспечивающих получение изделий - деталей с заданными конфигурацией, точностью и эксплуатационными свойствами.

Высокое качество изделия будет достигнуто, если выбранные материал и технологический процесс будут удовлетворять заданным эксплуатационным требованиям изделия: электрической и механической прочности, диэлектрической проницаемости, тангенсу угла диэлектрических потерь, прочности, плотности и т.п. Эти требования должны быть учтены при создании элементной базы (микросхем, микросборок и т.п.) и элементов базовых несущих конструкций (БНК), печатных плат, панелей, рам, стоек, каркасов и др.

При переработки пластмасс в условиях массового производства для обеспечения высокого качества изделий решают материаловедческие, технологические, научно-организационные и другие задачи.

Материаловедческие задачи состоят в правильном выборе типа и марки полимера, таким образом, чтобы обеспечить возможность формования изделия с заданными конфигурацией и эксплуатационными свойствами.

Технологические задачи включают в себя всю совокупность вопросов технологии переработки полимеров, обеспечивающих качество изделия: подготовку полимеров к формованию, разработку-определение технологических параметров формования, разработку инструмента, выбор оборудования.

Основные этапы работы по применению пластмасс в изделиях следующие:

1. Анализ условий работы  изделия, разработка требований  к эксплуатационным свойствам.

2. Выбор вида пластмассы  по заданным требованиям и  эксплуатационным свойствам изделия.

3. Выбор способа переработки  пластмассы в изделие и оборудования.

4. Выбор базовой марки  пластмассы и на её основе  марки с улучшенными технологическими  свойствами.

5. Конструирование, изготовление, испытание и отладка технологической  оснастки и др.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Физико-химические основы строения.

2.1. Структура полимеров.

Полимеры состоят из повторяющихся групп атомов - звеньев исходного вещества - мономера, образующих молекулы в тысячи раз превышающих длину неполимерных соединений, такие молекулы называют макромолекулами. Чем больше звеньев в макромолекуле полимера (больше степень полимеризации), тем более прочен материал и более стоек к действию нагрева и растворителей. Из-за невозможности эффективной переработки малоплавкого и труднорастворимого полимера в ряде случаев получают сначала полуфабрикаты - полимеры со сравнительно низкой молекулярной массой - олигомеры, легко доводимые до высоко молекулярного уровня при дополнительной тепловой обработке одновременно с изготовлением изделия.

В зависимости от состава различают группы полимерных соединений: гомополимеры - полимеры, состоящие из одинаковых звеньев мономеров; сополимеры - полимеры, состоящие из разных исходных звеньев мономеров; элементоорганические - соединения с введен-ными в главную цепь или боковые цепи атомами кремния (кремнийорганические соединения), бора алюминия и др. Эти соединения обладают повышенной теплостойкостью.

 

2.2. Свойства полимеров.

Все свойства полимеров зависят от их химического состава и молекулярной массы. Прочность, твердость, температура перехода, диэлектрическая проницаемость, электрическая прочность, электросопротивление, тангенс угла диэлектрических потерь и другие свойства у различных полимеров изменяются в широком диапазоне (табл. 1).

Полимеры в твердом состоянии могут быть аморфными и кристаллическими. При нагревании аморфного полимера наблюдают три физических состояния: стеклообразное, высокоэластичное и вязкотекучее. Эти состояния устанавливают на основании кривой термомеханического состояния. Аморфный полимер находится ниже температуры стеклования (Тс) в твердом агрегатном состоянии. При температуре выше Тс полимер находится в высокоэластичном состоянии; молекулярная подвижность при этом становится настолько большой, что структура в ближнем порядке успевает перестраиваться вслед за изменением температуры, а макромолекулы могут изгибаться под действием внешних сил. Общая деформация складывается в этом случае из упругой и запаздывающей высокоэластичной деформации. При упругой деформации изменяются средние межцентровые, межмолекулярные расстояния и валентные углы в полимерной цепи, при высокоэластичной деформации изменяется ориентация и перемещаются на значительные расстояния звенья гибких цепей.

Кристаллизующийся полимер в зависимости от скорости охлаждения расплава полимера может проявлять два вида структур: аморфную и кристаллическую. При медленном охлаждении кристаллизующихся полимеров совместная укладка отрезков макромолекул образует структуру макромолекул. Это затрудняет переход их из одной конформации в другую, из-за чего отсутствует гибкость макромолекул и нет высокоэластичного состояния. При быстром охлаждении кристаллические структуры не успевают полностью сформировываться и поэтому имеется между ними в переохлажденном полимере “зомороженная” - аморфная структура. Эта аморфная структура при повторном нагреве до температуры выше температуры плавления (Тпл) создает вязкотекучее состояние.

Вязкотекучее состояние, характерное для аморфного и кристаллического состояния полимера, в основном, обеспечивает при течении полимера необходимые деформации путем последовательного движения сегментов. Вязкость полимера увеличивается с увеличением молекулярной массы полимера, увеличивается также при этом и давление формования изделий.

В заключении отметим, что с увеличением температуры до некоторой величины у полимерного материала начинается процесс термодеструкции - разложения материала.

Свойства полимеров, определяющие качество в процессе переработки:

1) реологические: а) вязкостные , определяющие процесс вязкого течения с развитием пластической деформации; б) высокоэластичные , определяющие процесс развития и накопления обратимой высокоэластичной деформации при формовании; в) релаксационные , определяющие релаксацию (уменьшение) касательных и нормальных напряжений, высокоэластичной деформации и ориентированных макромолекулярных цепей;

2) стойкость полимеров  к термоокислительной, гидролитической и механической деструкции в процессе формования под действием температуры, кислорода, влаги, механических напряжений;

3) теплофизические, определяющие  изменение объема, нагрев и охлаждение  изделия в процессе формования  и фиксирования формы и размеров;

4) влажность, определяющая  текучесть материала при формовании  и качество изделия (вызывает  гидролитическую деструкцию при  формовании);

5) объемные характеристики  сыпучих материалов в твердом  состоянии (насыпная масса, сыпучесть, гранулометрический состав).

Вязкостные свойства расплава полимеров . Формование изделий из полимеров осуществляют в процессе их вязкого течения , сопровождающегося пластической деформацией. При этом тонкий слой материала, соприкасающийся с неподвижной стенкой инструмента, из-за прилипания к ней имеет нулевую скорость смещения (неподвижен), средний слой - наибольшую скорость смещения V; в режиме установившегося течения связь между напряжением сдвига t и скоростью сдвига g линейная (закон Ньютона для вязких жидкостей): t=h*g, где h - коэффициент вязкости или вязкость. Улучшению течения материала способствуют увеличение температуры, увеличение напряжения сдвига, повышение количества влаги, снижение давления и уменьшение молекулярной массы расплава.

Многие свойства полимерных материалов в изделиях зависят от структуры, которую формирует процесс переработки. В зависимости от полимера и условий переработки в изделиях возникает аморфная или кристаллическая структура.

Структура изделия с аморфным полимером характеризуется определенной степенью ориентации участков цепных макромолекул и расположением ориентированных областей по сечению изделия вдоль направления сдвига (течения) материала. Это приводит к анизотропии свойств.

Структуру изделия с кристаллическим полимером характеризует определенная степень кристалличности (от 60 до 95%) и неравномерность кристаллических областей по сечению. Свойства таких изделий, полученных в разных условиях переработки, несмотря на морфологическую схожесть структуры, различны.

Показатели качества изделий из полимерных материалов зависят от свойств, условий подготовки, переработки и физической модификации материала. Внешний вид изделий зависит от условий переработки, чистоты материала, влажности.

Диэлектрические показатели и химическая стойкость зависят от химической структуры и модификации полимера.

Механические свойства - прочность, ударная стойкость, деформация, жесткость, теплостойкость - зависят от надмолекулярной структуры, а коэффициент трения и износостойкость, стойкость к горению зависят от химической структуры и модификации.

Эксплуатационные свойства - размерная точность и размерная стабильность - зависят, как от химической структуры, молекулярных характеристик, технологических свойств, так и от технологии переработки и технологичности конструкции.

Информация о работе Физико-химические основы строения полимеров