Физиология коры больших полушарии головного мозга человека

Автор работы: Пользователь скрыл имя, 31 Марта 2015 в 20:54, реферат

Краткое описание

Цель данной работы рассказать о физиологии больших полушарий головного мозга и зависимости функциональной деятельности человека от асимметрии больших полушарий, а также познакомиться с физиологическими механизмами эмоций, их классификацией и компонентами.

Содержание

1. Введение.
2. Общая информация о коре больших полушарий.
3. Строение коры.
4. Ассоциативные зоны и локализация полей.
5. Значение различных участков коры полушарий головного мозга.
6. Морфологические основы локализации функции в коре головного мозга.
7. Биоэлектрическая активность головного мозга.
8. Функциональная ассиметрия головного мозга.
9. Физиологические механизмы эмоции и нейроанатомические субстраты эмоций.
10. Классификации эмоций. Компоненты эмоций.
11. Методы изучения функций коры больших полушарий головного мозга.
12. Список используемой литературы.

Вложенные файлы: 1 файл

физиология мозга.docx

— 138.70 Кб (Скачать файл)

Сургутский государственный университет

 

 

Кафедра физиологии

 

 

Реферат на тему: «Физиология коры больших полушарии головного мозга человека»

 

 

 

 

Выполнил студент 2 курса леч.факультета:

Инюшев Михаил Васильевич

Проверил преподаватель:

Юрина Марина Анатольевна

 

 

 

 

 

 

Сургут 2013

Содержание:

1. Введение.

2. Общая информация о коре больших полушарий.

3. Строение коры.

4. Ассоциативные зоны и локализация полей.

5. Значение различных участков коры полушарий головного мозга.

6. Морфологические основы локализации функции в коре головного мозга.

7. Биоэлектрическая активность головного мозга.

8. Функциональная ассиметрия головного мозга.

9. Физиологические механизмы эмоции и нейроанатомические субстраты эмоций.

10. Классификации эмоций. Компоненты эмоций.

11. Методы изучения функций коры больших полушарий головного мозга.

12. Список используемой литературы.

 

 

 

 

 

 

 

 

1. Введение.

Кора головного мозга осуществляет тончайшее равновесие между организмом и внешней средой, регулирует и направляет физиологические процессы, протекающие внутри организма, обеспечивает его сложнейшее функциональное единство.

Цель данной работы рассказать о физиологии больших полушарий головного мозга и зависимости функциональной деятельности человека от асимметрии больших полушарий, а также познакомиться с физиологическими механизмами эмоций, их классификацией и компонентами.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Общая информация  о коре больших полушарий.

Большие полушария – парные образования головного мозга. У человека они достигают ≈ 80% от общей массы мозга. Большие полушария осуществляют регуляцию высших нервных функций, лежащих в основе всех психических процессов человека, в то время как стволовая часть мозга обеспечивает низшие функции нервной системы, связанные с регуляцией деятельности внутренних органов.

Высшие функции обеспечиваются деятельностью особого отдела больших полушарий – коры головного мозга, которая несет главную ответственность за формирование условно-рефлекторных реакций. У человека по сравнению с животными кора одновременно ответственна и за согласование работы внутренних органов. Такое возрастание роли коры в регуляции всех функций в организме называется кортикализацией функций.

Кора выполняет следующие функции:

1.  взаимодействие организма с внешней средой за счет безусловных и условных рефлексов.

2.  осуществление высшей нервной деятельности (поведения) организма.

3.  выполнение высших психических функций (мышления и сознания).

4.  регуляция работы внутренних органов и обмена веществ в организме.

Кора больших полушарий представлена 12-18 миллиардами клеток, расположенных тонким слоем 3-4 мм на площади 2400 см2. 65-70 % этой площади находится в глубине борозд, а 30-35 % - на видимой поверхности полушарий. Кора состоит из нервных клеток, их отростков и нейроглии, для которых характерно обилие межнейронных связей.

 

 

 

 

 

 

3. Строение коры.

Кора покрывает поверхность больших полушарий с ее многочисленными бороздами и извилинами, за счет которых площадь коры значительно увеличивается. Различают ассоциативные зоны коры, а также сенсорную и моторную кору – области, в которых сосредоточены нейтроны, иннервирующие различные части тела.

Кора больших полушарий связана нервными путями со всеми нижележащими отделами центральной нервной системы, а через них — со всеми органами тела. С одной стороны, импульсы, поступающие с периферии, доходят до той или иной точки коры, с другой — кора посылает «распоряжения» в нижележащие отделы мозга, а оттуда — к различным органам.

По происхождению и структуре кора больших полушарий неоднородна. Большую часть коры у человека занимает новая кора неокортекс (neocortex), филогенетически наиболее молодая корковая формация. Филогенетически более ранние корковые структуры — древняя кора (paleocortex) и старая кора (archicortex) — занимают небольшую часть поверхности полушарий. Закладка новой коры образуется в латеральных частях плаща. Новая кора интенсивно развивается и оттесняет древнюю кору на основание полушарий, где она сохраняется в виде узкой полоски обонятельной коры и занимает 0,6% поверхности коры на вентральной поверхности полушарий, а старая кора отодвигается на медиальные поверхности полушарий, занимает 2, 2% поверхности коры и представлена гиппокампом и зубчатой извилиной. По происхождению и клеточному строению новая кора отличается от древней и старой коры. Переход от одной корковой формации к другой в клеточном строении происходит постепенно. Кора переходного типа называется межуточной корой, она занимает 1, 3% общей площади коры. Таким образом, большую часть поверхности коры (95, 6%) занимает новая кора.

Для древней коры характерно отсутствие послойного строения. В ней преобладают крупные нейроны, сгруппированные в клеточные островки. Старая кора имеет три клеточных слоя. Ключевой структурой старой коры является гиппокамп. Гиппокамп имеет обширные связи со многими другими структурами мозга. Он является центральной структурой лимбической системы мозга.

Функциональной единицей коры является вертикальная колонка взаимосвязанных нейронов. Все нейроны вертикальной колонки отвечают на одно и тоже афферентное раздражение одинаковой реакцией и совместно формируют эфферентный ответ. Распространение возбуждения в горизонтальном направлении (иррадиация) обеспечивается поперечными волокнами, идущими от одной вертикальной колонки к другой, а ограничивается – процессами торможения. Возникновение возбуждения в вертикальной колонке нейронов приводит к активности спинальные мотонейроны и к сокращению связанных с ними мышц.

Упорядоченное положение клеток в коре называется цитоархитектоникой, а их волокон – миелоархитектоникой.

Кора больших полушарий имеет пяти- , шестислойное строение. Нейроны представлены сенсорными, моторными (клетками Бетца), интернейронами (тормозными и возбуждающими нейронами).

Колонки больших полушарий функциональные единицы коры, делятся на микромодули, которые имеют однородные нейроны.

Основные функции коры больших полушарий:

1) интеграция (мышление, сознание, речь);

2) обеспечение связи организма с внешней средой, приспособление его к ее изменениям;

3) уточнение взаимодействия между организмом и системами внутри организма;

4) координация движений.

Эти функции обеспечиваются корригирующими, запускающими, интегративными механизмами.

И. П. Павлов, создавая учение об анализаторах, выделял три отдела: периферический (рецепторный), проводниковый (трехнейронный путь передачи импульса с рецепторов), мозговой (определенные области коры больших полушарий, где происходит переработка нервного импульса, который приобретает новое качество). Мозговой отдел состоит из ядер анализатора и рассеянных элементов.

Согласно современным представлениям о локализации функций при прохождении импульса в коре головного мозга возникают три типа поля.

1. Первичная проекционная зона лежит в области центрального отдела ядер-анализаторов, где впервые появился электрический ответ (вызванный потенциал), нарушения в области центральных ядер ведут к нарушению ощущений.

2. Вторичная зона лежит в окружении ядра, не связана с рецепторами, по вставочным нейронам импульс идет из первичной проекционной зоны. Здесь устанавливается взаимосвязь между явлениями и их качествами, нарушения ведут к нарушению восприятий (обобщенных отражений).

3. Третичная (ассоциативная) зона имеет мультисенсорные нейроны. Информация переработана до значимой. Система способна к пластической перестройке, длительному хранению следов сенсорного действия. При нарушении страдают форма абстрактного отражения действительности, речь, целенаправленное поведение.

Совместная работа больших полушарий и их асимметрия.

Для совместной работы полушарий имеются морфологические предпосылки. Мозолистое тело осуществляет горизонтальную связь с подкорковыми образованиями и ретикулярной формацией ствола мозга. Таким образом осуществляется содружественная работа полушарий и реципрокная иннервация при совместной работе. Функциональная асимметрия. В левом полушарии доминируют речевые, двигательные, зрительные и слуховые функции. Мыслительный тип нервной системы является левополушарным, а художественный – правополушарным.

 

 

 

 

 

 

 

 

 

 

4. Ассоциативные  зоны и локализация полей.

Каждый анализатор (например, зрения, обоняния, слуха и т.д.) имеет, по представлению И. П. Павлова, в коре головного мозга центральную часть (ядро), где осуществляется высший анализ и синтез, и широкую периферическую зону, в которой аналитические и синтетические процессы совершаются в элементарном виде. Между ядрами отдельных анализаторов разбросаны и перемешаны нервные элементы, принадлежащие различным анализаторам. Если ядро анализатора в силу каких-либо причин разрушено или выбыло из строя, его функцию перенимают периферические элементы того же анализатора. Современная физиология отвергает и узкий («абсолютный») локализационизм и принцип однородности, равноценности всех участков коры мозга. Локализация существует, но имеет «подвижный», «динамический» характер, о чем еще много лет назад говорил И.П. Павлов.

Нервные образования, которые мы привыкли называть «центрами», не ограничиваются корой головного мозга. Они включают и подкорковые структуры, значение которых необычайно велико.

Следует помнить, что любой центр коры головного мозга теснейшим образом связан со всеми другими отделами центральной нервной системы. В этом объединении, или, как говорят, интеграции, и заключается ведущая роль коры мозга в организме. Представление о единых корковых центрах, полностью обеспечивающих какую-либо определенную функцию, является в настоящее время пройденным этапом в физиологии.

К тому же кора головного мозга отличается необычайной пластичностью, и одни отделы ее легко перенимают функции других, компенсируя расстройство их деятельности, вызванное различными причинами. Наиболее важная задача современной науки выявить анатомическую основу физиологических процессов и одновременно установить связи и взаимосвязи между всеми явлениями, наблюдаемыми в головном мозгу. Исследования, проведенные различными авторами, как отечественными, так и зарубежными, показали, что в центральной извилине мозга, расположенной спереди от центральной борозды, находится специальная двигательная область. Раздражение ее электрическим током вызывает сокращение определенных мышц противоположной стороны тела. Напротив, удаление этой области хирургическим путем ведет к расстройству координированных движений, шаткости походки, ослаблению мышц. У человека ранение двигательной области сопровождается обычно параличами и другими тяжелыми нарушениями деятельности организма. С помощью метода условных рефлексов удалось показать, что так называемые двигательные центры содержат чувствительные клетки, к которым приходят периферические раздражения от двигательного аппарата (костей, суставов, мышц). Эта область является мозговым концом двигательного анализатора в такой же степени, как затылочная — мозговым концом зрительного анализатора, височная — слухового анализатора и т.д. В двигательной области имеются как чувствительные клетки, расположенные в верхних слоях коры, так и двигательные, сосредоточенные в ее нижних слоях. Импульсы от рецепторов двигательного аппарата поступают в чувствительные клетки передней мозговой извилины, а отсюда уже передаются двигательным клеткам головного и спинного мозга.

У человека ассоциативные зоны достигают наибольшего развития. Локализация функций в коре головного мозга относительна – здесь нельзя провести каких-либо четких границ, поэтому мозг обладает высокой пластичностью, приспосабливаемостью к повреждениям. Тем не менее, морфологическая и функциональная неоднородность коры позволила выделить в ней 52 цитоархитектонических поля (К. Бродман), а среди них – центры зрения, слуха, осязания и др. Все они связаны между собой волокнами проводящих путей белого вещества, которые делятся на 3 типа:

1.  ассоциативные (связывают зоны коры в пределах одного полушария),

2.  комиссуральные (связывают симметричные зоны коры двух полушарий через мозолистое тело),

3.  проекционные (связывают кору и подкорку с периферическими органами, бывают чувствительные и двигательные).

1. Чувствительная зона  коры (в постцентральной извилине) воспринимает импульсы от тактильных, температурных и болевых рецепторов  кожи, а также от проприорецепторов  противоположной половины тела.

2. Двигательная зона коры (в предцентральной извилине) содержит в 5 слое коры пирамидные клетки Беца, от которых идут импульсы произвольных движений к скелетным мышцам противоположной половины тела.

3. Премоторная зона (в основании средней лобной извилины) обеспечивает сочетанный поворот головы и глаз в противоположную сторону.

4. Праксическая зона (в надкраевой извилине) обеспечивает сложные целенаправленные движения практической деятельности и профессиональных двигательных навыков. Зона асимметрична (у правшей – в левом, а у левшей – в правом полушарии).

5. Центр проприоцептивного гнозиса (в верхней теменной дольке) обеспечивает восприятие импульсов проприорецепторов, контролирует ощущения тела и его частей как целостного образования.

6. Центр чтения (в верхней  теменной дольке, вблизи затылочной  доли) контролирует восприятие написанного  текста.

7. Слуховая зона коры (в  верхней височной извилине) воспринимает  информацию от рецепторов органа  слуха.

8. Слуховой центр речи, центр Вернике (в основании верхней височной извилины). Зона асимметрична (у правшей – в левом, а у левшей – в правом полушарии).

9. Слуховой центр пения (в верхней височной извилине). Зона асимметрична (у правшей  – в левом, а у левшей –  в правом полушарии).

10. Двигательный центр  устной речи, центр Брока (в основании нижней лобной извилины) контролирует произвольные сокращения мышц, участвующих в речеобразовании. Зона асимметрична (у правшей – в левом, а у левшей – в правом полушарии).

11. Двигательный центр  письменной речи (в основании  средней лобной извилины) обеспечивает  произвольные движения, связанные  с написанием букв и других  знаков. Зона асимметрична (у правшей  – в левом, а у левшей –  в правом полушарии).

Информация о работе Физиология коры больших полушарии головного мозга человека