Шпаргалка по «Концепции современного естествознания»

Автор работы: Пользователь скрыл имя, 14 Октября 2012 в 16:06, шпаргалка

Краткое описание

Работа содержит ответы на вопросы по дисциплине «Концепции современного естествознания».

Вложенные файлы: 1 файл

Ответы по КСЕ.doc

— 559.50 Кб (Скачать файл)

Дальнейшее исследование "неклассических" форм генетических рекомбинаций привело к открытию целого ряда переносимых или "мигрирующих" генетических элементов. Важнейшими из них являются автономные генетические элементы, названные плазмидами, которые служат активными переносчиками генетической информации. На основе этих результатов некоторыми учеными высказано предположение, что "мигрирующие" генетические элементы вызывают более существенные изменения в геномах клеток, чем мутации.

Все это не могло не поставить  вопроса о том, работает ли естественный отбор на молекулярно-генетическом уровне? Появление "теории нейтральных мутаций" еще больше обострило ситуацию, поскольку она доказывает, что изменения в функциях аппарата, синтезирующего белок, являются результатом нейтральных, случайных мутаций, не оказывающих влияния на эволюцию. Хотя такой вывод и не является общепризнанным, но хорошо известно, что действие естественного отбора проявляется на уровне фенотипа, т.е. живого, целостного организма, а это связано уже с более высоким уровнем исследования.  

 

2. Онтогенетический  уровень живых систем.

В настоящее  время считают, что онтогенетический уровень охватывает все отдельные  одноклеточные и многоклеточные живые организмы, а раньше чаше всего  его рассматривали как включающий только многоклеточные организмы.

Сам термин "онтогенез" ввел в  науку известный немецкий биолог Э. Геккель, автор знаменитого биогенетического закона, согласно которому онтогенез  в краткой форме повторяет  филогенез. Это означает, что отдельный  организм в своем индивидуальном развитии в сокращенной форме повторяет историю рода.

Поскольку минимальной самостоятельной  живой системой можно считать  клетку, постольку изучение онтогенетического  уровня следует начать именно с клетки. В зависимости от характера структуры  и функционирования все клетки можно разделить на два класса:

• прокариоты — клетки, лишенные ядер;

• эукариоты, появившиеся позднее, — клетки, содержащие ядра.

При более глубоком исследовании оказалось, что эти два класса клеток обладают существенными различиями в структуре и функционировании генетического аппарата, строении клеточных стенок и мембранных систем, характере механизмов синтеза белков и т. п.

Соответственно тому, из каких клеток построены живые системы, их можно  разделить на две обширные группы или два живых царства. К первому принадлежат многочисленные виды таких одноклеточных организмов, как бактерии, сине-зеленые водоросли, грибы и др. Все остальные одноклеточные, а тем более многоклеточные организмы, начиная от низших и кончая высшими, построены из позднее возникших эукариотных клеток. Эту классификацию пришлось, однако, пересмотреть после открытия архебактерий, особенность которых состоит в том, что их клетки в чем-то сходны, с одной стороны, с прокариотами, а с другой — с эукариотами. На этом основании в настоящее время различают три типа онтогенетического уровня организации живых систем, которые представляют собой три линии развития живого мира: 1) прокариоты, или эубактерии; 2) эукариоты и 3) архебактерий.

По-видимому, все эти три линии  развития исходят из единой первичной минимальной живой системы, которую можно называть протоклеткой.Предполагают, что она обладала всеми основными свойствами, характерными для живых организмов. К ним относят прежде всего способность к обмену с окружающей средой — признак, присущий всем открытым системам. С нею непосредственно связана способность протоклетки к метаболизму, т.е. осуществлению биохимических реакций, сопровождающихся усвоением необходимых для роста клетки веществ и удалением использованных продуктов реакций. Дальнейшее функционирование и развитие клетки предполагает также наличие у нее способности к делению и отпочкованию. К этим признакам многие исследователи добавляют дополнительные свойства, но все ученые признают, что протоклетка отнюдь не была какой-то бесструктурной массой, а представляла собой достаточно организованную целостность, которую можно охарактеризовать как первичную живую систему. Предполагают также, что протоклетка по важнейшим своим структурно-функциональным свойствам не была подобна современным одноклеточным прокариотам, а обладала некоторыми признаками, аналогичными свойствам эукариотных клеток.

По вопросу происхождения эукариотных  клеток существуют две основные гипотезы. Сторонники аутогенной гипотезы считают, что такие клетки могли возникнуть путем дифференциации и усложнения слабо структурированных клеточных образований, подобных прока-риотам. Защитники другой, симбиотической, гипотезы полагают, что эукариотные клетки образовались путем симбиоза нескольких прокариотных клеток, геномы которых внедрились в клетку-хозяина, причем, по одной версии, они способствовали постепенному превращению последней в эукариотную клетку, а по другой — она уже обладала некоторыми свойствами эукариотов.

Структурный подход к анализу первичных  живых систем на онтогенетическом уровне, о котором шла речь выше, нуждается в дополнительном освещении функциональных особенностей их жизнедеятельности и обмена веществ. Среди них особого внимания заслуживает исследование трофических, или пищевых, потребностей организмов. Для этого необходимо проследить взаимоотношения организмов с окружающей средой в рамках соответствующей экологической системы. Именно поэтому изучение структуры и основных типов питания уже давно привлекало внимание ученых. Они выделили прежде всего два главных типа питания

К автотрофному типу относились организмы, которые  не нуждались в органической пище и могли жить либо за счет ассимиляции  углекислоты (бактерии), либо фотосинтеза (растения). Ко второму, гетеротрофному, типу принадлежали все организмы, которые не могли жить без органической пищи.

По вопросу о том, какой тип  питания возник вначале становления  живых систем, мнения расходятся. Одни ученые не без основания полагают, что сначала появился автотрофный  тип, поскольку сложные органические вещества, необходимые для гетеротрофного питания, могли образоваться лишь после того, как автотрофные организмы создали для этого необходимые условия. Другие исследователи считают, что гетеротрофное питание появилось раньше автотрофного. Такого допущения, в частности, придерживается в своей гипотезе происхождения жизни А.И. Опарин, полагая, что уже первичный "бульон", в котором зародилась жизнь, содержал органические соединения как питательную среду для дальнейшего развития.

Первоначальная простая классификация  основных типов питания и соответственно организмов на автотрофов и гипертрофов в дальнейшем подверглась изменениям и уточнениям, в которых выявлялись такие важные факторы, как способность организмов синтезировать необходимые вещества для роста (витамины, гормоны и специфические ферменты), обеспечивать себя энергией, источниками получения углерода, азота и водорода; зависимость от экологической среды и т. п. Таким образом, сложный и дифференцированный характер трофических потребностей организмов свидетельствует о необходимости целостного, системного подхода к изучению живых систем и на онтогенетическом уровне.

Такая целостность, взаимосвязь и взаимодействие выступают  в обшей форме функциональной системности, которая находит выражение  в согласованном функционировании различных компонентов одноклеточных и многоклеточных организмов.

При этом отдельные компоненты содействуют  и способствуют согласованному функционированию других, обеспечивая тем самым  единство и целостность в осуществлении  всех процессов жизнедеятельности  всего организма. Подобная функциональная системность в специфических формах выступает и на других уровнях организации живых организмов. 

 

3. Уровни организации  живых систем.

Онтогенетический уровень организации, как мы видели, относится к отдельным  живым организмам — одноклеточным и многоклеточным. Его называют также организменным уровнем, поскольку при этом речь идет о структуре и функциях отдельного организма без учета его связей и взаимодействий с другими организмами. Поскольку минимальной живой системой служит клетка, постольку на этом уровне уделяется такое большое внимание анализу структуры и функционирования различных клеточных образований.

Популяционный уровень начинается с изучения взаимосвязи  и взаимодействия между совокупностями особей одного вида, которые имеют единый генофонд и занимают единую территорию. Такие совокупности, или, скорее, системы живых организмов составляют определенную популяцию. Очевидно, что популяционный уровень выходит за рамки отдельного организма и поэтому его называют надорганизменным уровнем организации.

Приведенное общее определение  популяции дает возможность отличать организменный уровень живого от надорганизменного. Сам термин "популяция" был введен одним из основателей  генетики — Вильгельмом Иогансеном (1857—1927), который с его помощью обозначал генетически неоднородную совокупность организмов от однородной, которую он называл "чистой линией".

В дальнейшем этот термин и обозначаемое им понятие приобрели более глубокий смысл. Многие современные ученые характеризуют  популяцию не столько как простую совокупность отдельных организмов, сколько как целостную их систему, в которой они непрерывно взаимодействуют друг с другом и с окружающей средой. Благодаря этому они оказываются способными к трансформациям, изменению своего ареала и, самое главное, к развитию.

Популяции представляют собой первый надорганизменный уровень организации живых существ, который хотя и тесно связан с их онтогенетическим и молекулярными уровнями, но качественно отличается от них по характеру взаимодействия составляющих элементов, ибо в этом взаимодействии они выступают как целостные общности организмов. По современным представлениям, именно популяции служат элементарными единицами эволюции.

Второй надорганизменный уровень организации живого составляют различные системы популяций, которые называют биоценозами.

Они являются более обширными объединениями  живых существ и в значительно  большей мере зависят от небиологических, или абиотических, факторов развития.

Третий надорганизменный уровень организации содержит в качестве элементов разные биоценозы и в еще большей степени характеризуется зависимостью от многочисленных земных и абиотических условий своего существования (географических, климатических, гидрологических, атмосферных и т. п.).

Для его обозначения академик Владимир Николаевич Сукачев (1880—1967) ввел термин биогеоценоз.

Четвертый надорганизменный уровень организации возникает  из объединения самых разнообразных  биогеоценозов и теперь обычно называется биосферой.

Таким образом, в функционировании и развитии живой природы особенно наглядно и убедительно выступают ее целостность и системность, которые проявляются в существовании различных иерархических уровней ее организации. При этом каждый новый уровень характеризуется особыми свойствами и закономерностями, не сводимыми к закономерностям прежнего, низшего уровня.

Поскольку основу надорганизменных уровней  организации живого составляют популяции, целесообразно несколько подробнее  остановиться на их характеристике.

Изучением популяций и биоценозов занимается интенсивно развивающаяся в последние годы отрасль биологической науки, называемаяпопуляционной биологией. Одна из основных проблем, которую она призвана решить, заключается в установлении пространственной структуры и объемов популяций. Определить границу между популяциями чрезвычайно трудно, так как в силу подвижности компонентов популяции, т. е. составляющих ее организмов, происходит непрерывное перемешивание ее населения. Другая трудность — в наличии внутри популяций различных группировок и существовании популяций разных рангов.

В рамках популяционной биологии исследуются  также весьма важные проблемы метаболического  взаимодействия между популяциями  и биоценозами, которые относятся  прежде всего к изучению их трофических, или пищевых, связей. Именно на этой основе происходит разграничение популяций и биоценозов. Оно состоит в том, что популяции представляют собой незамкнутые, открытые метаболические системы, которые могут существовать и развиваться только при взаимодействии с другими популяциями. В отличие от них биоценозы — относительно замкнутые метаболические системы, в которых обмен и круговорот веществ могут осуществляться между входящими в биоценоз популяциями. Однако эта замкнутость имеет ограниченный и относительный характер, хотя бы потому, что разные биоценозы взаимодействуют между собой.

Для характеристики трофического взаимодействия популяций и биоценозов существенное значение имеет общее правило, согласно которому, чем длиннее и сложнее  пищевые связи между организмами  и популяциями, тем более жизнеспособной и устойчивой является живая система любого (надорганизменного) уровня. Отсюда становится ясным, что с биологической точки зрения на таком уровне решающее значение приобретаеттрофический характер взаимодействия между составляющими живую систему элементами.

Поскольку популяции, как отмечалось выше, являются элементарными единицами  микроэволюции, постольку становится необходимым также рассмотреть  эту их характерную особенность, но мы отложим обсуждение этого вопроса  до освещения общих проблем эволюции. Теперь же перейдем к анализу биосферного уровня организации живого.

 

 

 

  1. Современная биология: концепция эволюции.

 

Под эволюцией подразумевается  процесс длительных, постепенных, медленных  изменений, которые в конечном итоге  приводят к изменениям коренным, качественным, завершающимся образованием новых систем, структур и видов. Представления об эволюции в естествознании имеют ключевое значение. В начале нашего курса было рассмотрено понятие парадигмы – особого способа организации научного знания, задающего характер вùдения мира, системы предварительных условий, ориентиров и предпосылок в процессе построения и обоснования различных теорий, т.е. системы, которая определяет в целом тенденции развития научных исследований.Парадигма современного естествознания – это эволюционно-синергетическая парадигма, в основе которой лежат представления о самоорганизации и эволюции материи на всех ее структурных уровнях. Ранее уже говорилось об эволюции Вселенной, звезд, планетных систем, геологической и химической эволюции. Однако впервые эволюционная концепция четко и обоснованно была сформулирована в биологии.

Информация о работе Шпаргалка по «Концепции современного естествознания»