Золотое сечение

Автор работы: Пользователь скрыл имя, 12 Декабря 2012 в 20:29, реферат

Краткое описание

Правильные многоугольники привлекали внимание древнегреческих учёных ещё задолго да Архимеда. Пифагорейцы, выбравшие эмблемой своего союза пентаграмму - пятиконечную звезду, придавали очень большое значение задаче о делении окружности на равные части, то есть о построении правильного вписанного многоугольника.

Содержание

1. Введение. Пропорция золотого сечения. Ф и φ………………………………………………………………..
2. История золотого сечения …………………………………
3. Построение пропорции ……………..…………………
4. Второе золотое сечение……………………………………
5. "Золотые" фигуры…………………………………………..
6. Числа Фибоначчи……………………………………………
7. Золотое сечение в искусстве………………………………
8. Заключение. Практическое применение………………..
Литература………………………………………………………..

Вложенные файлы: 1 файл

ref.doc

— 910.50 Кб (Скачать файл)

 

Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и  обобщенных золотых сечений. Ряд  Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд чисел 1, 2, 4, 8, 16...(то есть ряд чисел до n , где любое натуральное число, меньшее n можно представить суммой некоторых чисел этого ряда) на первый взгляд совершенно разные. Но алгоритмы их построения весьма  похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2 = 1 + 1; 4 = 2 + 2..., во втором – это сумма двух предыдущих чисел 2 =1 + 1, 3 = 2 + 1, 5 = 3 + 2....   Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи?

 

Действительно, зададимся  числовым параметром S, который может  принимать любые значения: 0, 1, 2, 3, 4, 5... Рассмотрим числовой ряд, S + 1 первых членов которого – единицы, а каждый из последующих равен сумме двух членов предыдущего и отстоящего от предыдущего на S шагов. Если n-й член этого ряда мы обозначим через S (n), то получим общую формулу S (n) = S (n – 1) + S (n – S – 1).

Очевидно, что при S = 0 из этой формулы мы получим «двоичный» ряд, при S = 1 –ряд Фибоначчи, при S = 2, 3, 4. новые  ряды чисел, которые получили название S-чисел Фибоначчи.

В общем виде золотая S-пропорция есть положительный корень уравнения золотого S-сечения xS+1 – xS – 1 = 0.

 

Нетрудно показать, что  при S = 0 получается деление отрезка  пополам, а при S = 1 – знакомое классическое золотое сечение.

Отношения соседних S-чисел  Фибоначчи с абсолютной математической точностью совпадают в пределе с золотыми S-пропорциями! То есть золотые S-сечения являются числовыми инвариантами S-чисел Фибоначчи.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     

                         7.Золотое сечение в искусстве.

 

7.1. Золотое  сечение в живописи.

Переходя к примерам «золотого сечения» в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность –  одна из загадок истории. Сам Леонардо да Винчи говорил: «Пусть никто, не будучи математиком, не дерзнет читать мои труды».


Нет сомнений, что Леонардо да Винчи  был великим художником, это признавали уже его современники, но его личность и деятельность останутся покрытыми тайной, так как он оставил потомкам не связное изложение своих идей, а лишь многочисленные рукописные наброски, заметки, в которых говорится «обо всем на свете».

Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника..

Также пропорция золотого сечения  проявляется в картине Шишкина.  На этой знаменитой картине И. И. Шишкина  с очевидностью просматриваются  мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины по золотому сечению. Справа от сосны - освещенный солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали.

    В картине Рафаэля  "Избиение младенцев" просматривается другой элемент золотой пропорции - золотая спираль. На подготовительном эскизе Рафаэля проведены красные линии, идущие от смыслового центра композиции - точки, где пальцы воина сомкнулись вокруг лодыжки ребенка - вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза. Неизвестно, строил ли Рафаэль золотую спираль или чувствовал её.

Т.Кук использовал  при анализе картины Сандро Боттичелли «рождение Венеры» золотое сеченеие .


 

7.2. Пирамиды золотого  сечения.

 

Широко известны  медицинские свойства пирамид, особенно золотого сечения. По некоторым наиболее распространенным мнениям, комната, в  которой находится такая пирамида, кажется больше, а воздух - прозрачнее. Сны начинают запоминаться лучше.   Также известно, что золотое сечение широко применялась в архитектуре и скульптуре. Примером тому стали: Пантеон и Парфенон в Греции, здания архитекторов Баженова и Малевича

                                            

 

                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            8. Заключение.

 

Необходимо сказать, что  золотое сечение имеет большое применение в нашей жизни.

Было доказано, что человеческое тело делится в пропорции золотого сечения линией пояса.

Раковина наутилуса закручена  подобно золотой спирали.

Благодаря золотому сечению  был открыт пояс астероидов между Марсом и Юпитером – по пропорции там должна находиться ещё одна планета.

Возбуждение струны в точке , делящей  её в отношении золотого деления, не вызовет колебаний струны, то есть это точка компенсации.

На летательных аппаратах с электромагнитными источниками энергии создаются прямоугольные ячейки с пропорцией золотого сечения.

   Джоконда построена на золотых треугольниках, золотая спираль присутствует на картине Рафаэля «Избиение младенцев».

  Пропорция обнаружена в картине  Сандро Боттичелли «Рождение Венеры»

  Известно много памятников архитектуры,  построенных с использованием золотой пропорции, в том числе Пантеон и Парфенон в Афинах, здания архитекторов Баженова и Малевича.

Иоанну Кеплеру, жившему пять веков назад, принадлежит  высказывание: "Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления  отрезка в крайнем и среднем  отношении" 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Литература:

 

1. Д. Пидоу.  Геометрия и искусство. – М.: Мир, 1979. 
2. Журнал "Наука и техника"

3. Журнал «Квант», 1973, №  8. 
4. Журнал «Математика в школе», 1994, № 2; № 3.

5. Ковалев Ф.В. Золотое  сечение в живописи. К.: Выща школа, 1989.

6. Стахов А. Коды золотой пропорции.

7.Воробьев Н.Н. "Числа Фибоначчи" - М.: Наука 1964 

8. "Математика - Энциклопедия для детей" М.: Аванта +, 1998

9. Информация из интернета.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

 

               

                               

 

                          

                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




Информация о работе Золотое сечение