Цитология. Жасушалардың сыртқы зақымдаушы әсерлерге реакциясы

Автор работы: Пользователь скрыл имя, 11 Декабря 2014 в 19:28, реферат

Краткое описание

Цитология (гр. κύτος — «қойма», бұл жерде: «жасуша» және гр. λόγος — «оқу», «ғылым») - жасуша туралы ғылым. Цитология ғылымы біржасушалы, көпжасушалы ағзалар жасушасының құрылысын, құрамын және қызметін зерттейді. Ал жасуша бүкіл тірі денелердің ең қарапайым құрылысын, қызметін және дамуын сипаттайды. Сондықтан да цитологияның зерттейтін құрылыстары мен заңдылықтары цитология, тәнтану, эмбриология, физиология, генетика, биохимия, молекулалық биология және т.б. ғылым негіздерінің қалануына жол ашты.

Содержание

Цитология - жасуша туралы ғылым.
Жасушаны зерттеу әдістері.
Жасушаны өсіру тәсілі
Жасушаның бөлінуі
Жасушалардың сыртқы зақымдаушы әсерлерге реакциясы.
Пайдаланылған әдебиеттер

Вложенные файлы: 1 файл

гиста срс.docx

— 200.36 Кб (Скачать файл)

 Тірі жасушаларды зерттеуде оларды витальді деп аталатын боялар қолданылады. Бұл бояу табиғатта қышқыл түрінде (трипанды көк; литий кармині) кездеседі. Тірі жасушаларды бояған кезде цитоплазмада бояу түйіршік түрінде жинақталады, ол зақымданған немесе өлі жасушалардағы цитоплазм  мен ядро диффузды түрінде боялады.

 

 

Флуресценттік микроскопия әдісі

Тірі жасушаларды зерттеуде флуресценттік микроскопия әдісі мен флуоресценттейтін бояулар кеңінен қолданылады. Оның мәні бір заттардың жарық энергиясын жұтылуында жарықтандыру қасиетіне ие болуымен қорытындыланады. Флуоресценттік сәулелендіру қоздырғышының қатынасы бойынша флуоресценттік спектр әрқашан үлкен ұзындықтағы толқындар жағына ауытқиды. Мысалы, бөлініп алынған хлорофилл ультракүлгін сәуле көмегімен қызыл түспен жарықтанады. Бұл принцип флуоресценттік микроскопияда қолданады: қысқа ұзындықтағы толқын аймағындағы флуоресценттік объектіні қарастыруда. Әдетте мұндай микроскопта көк-күлгін облысында жарық беретін фильтрлер қолданылады. Ультракүлгін толқында толқында жұмыс істейтін люминесценттік микроскоптар ғылыми зерттеу жұмыстарда көп қолданылады.

 Өзіндік флуоресценцияда кейбір пигменттер бар (хлорофиллдер, бактериалды пигменттер, витаминдер (А және В2), гормондар. Егер флуоресценттік микроскоппен өсімдік жасушасын қараған кезде күңгірт-көк фонда жасуша ішінен қызыл дәндер ашық көрінеді - бұл хлоропласттар. Флуоресценттік микроскопия әдісінде тірі жасушаларға флуорохромдарды қосуға болады. (флуоресценциялы заттар). Бұл әдіс витальді бояумен ұқсас, яғни бұл жерде өте төмен концентрациясы бар бояу қолданылады (1x10-4-1х10-5) Көптеген флуорохромдар белгілі бір таңдаушы жасуша құрылысымен байланысып, оларды екіншілік люминесценцияға шақырады. Мысалы, сарғыш акринді флуорохром нуклеин қышқылымен таңдаулы байланысады. ДНҚ мономерлік түрдегі ДНҚ-мен байланысқанда жасыл түске флуоросценциаланады, ал димерлік түрдегі РНҚ-да қызыл түске жарықтанады. Сарғыш акриндинмен боялған тірі жасушаларды бақылауда, олардың ядроларында жасыл түсті жарық болады, ол цитоплпазмамен ядрошықта қызыл түс жарқырайды. Осы тірі жасушаларды осы әдістің көмегімен немесе басқа химиялық заттардың шоғырлануын көруге болады (кейбір жағдайда мөлшерін санау). Липидпен, шырыш және керотинмен және т.б. таңдаулы байланысатын флуорохромдар болады.

 Таңбаланған флуорохромдық антиденені тірі жасушаға инъецирлеуге болады. Мысалы, тубулин ақуыздық флуорохроммен байланысқан антиденелерін жасушаларға енгізсе, олар микротүтікшелермен косылады. Осының нәтижесінде мұндай тірі жасушаларды флуоресценттік микроскоптың көмегімен бақылауға болады.

 Соңғы кезде тірі жасушаларды немесе олардың компоненттерін зерттеу үшін бейнелерді өңдеуде жарық микроскоптың электронды-компьютермен үйлесімі кеңінен қолдана бастады (әсіресе фазасы қарма-қарсы). Бейнелерді электронды өңдеуде бейнетаспа қолданады, сонымен бірге бақылап отырған құрылымды қарама-қарсы етіп, фондық деңгейді "алып" және белгілейді. Мұндай әдістеме микротүтікше сияқты құрылымды телеэкраннан көруге мүмкіндік береді, жарық микроскоптың рұқсат етілген күнінен (20 нм) аз мөлшерде. Мұндай жүйені қолдануда тек цейтраферлі кино түсірілімді алмастырмайды, сонымен бірге бейнетаспаны қолданады, бейнелерді компьютерлік өңдеуде рұқсат етіледі: құрылым тығыздығының мәліметі туралы, сонымен бірге үш өлшемді ұйымдасу. Тірі жасушаларды зерттеуде бұл әдістің флуоресценттік микроскоппен үйлесімділігі үлкен жетістікке әкеледі. Жарық микроскоптағы жай әдіс микроскоптың терең еместігінен қаралып жатқан объекттің суреті үш өлшемде өңделуі өте қиын. әдетте жасушалар оптикалық кесілім ретінде берілген фокус тереңдігінде қаралады. Объектінің толық үш өлшемді реконструкциясын алуда арнайы конфокальді сканирлік жарық микроскопы қолданылады. Бұл прибордың көмегімен әр түрлі тереңдіктен және компьютерде жинақталған бейнелерден алынған тізбектердің кесілімі алынады. Сонымен бірге үш өлшемді, көлемді бейнеленген объектіні арнайы бағдарламамен құрастырады. Әдетте флуорохроммен боялған объекттер қолданады.

Поляризациялық микроскоп

Поляризациялық микроскоптың көмегімен субмикроскопиялық компоненттері тәртіппен орналасқан биологиялық құрылымдарды (коллаген талшықтары, миофибрилдер) зерттеуге болады. Жарық толқындарын белгілі бір поляризация бағытына бағыттайтын конденсорлы шынының алдына поляризатор орналасады. Зерттейтін препарат және объективтен кейін анализатор орналасады, ол жарық толқынына сол жазықтықта өткізеді. Поляризатор мен анализаторлар - призмалар (николь призмасы). Егер екінші призманы (анализатор) бірінші призмаға қарағанда 90°С бұрсақ, онда жарық түспейді. Осы екі призманың арасында екі қабатты сәуле шағылыстыратын немесе поляризация жасайтын қабілеттілігі бар объектілер болса, онда ол қараңғы ортада жарық шашқандай болып көрінеді.

Электронды микроскоп

Электронды микроскоптың көрсеткіштік қабілеті өте жоғары. Қазіргі электронды микроскоптың көрсеткіштік қабілеттілігі 0,1-0,3 нм-ге дейін жетеді. Электрондық микроскоптың құрылыс принципі жарық микроскопына ұқсас, сәулелерінің рөлін электр тоғымен қыздырылған вакуумда орналасқан V пішінді фольфрам жібі электрондар тасқынының қызметін атқарады, әйнек линзалардың орнында электромагниттік линзалар орналасқан. Жарық микроскопының объективі мен окулярының орнына электрондық микроскоптың магниттік катушкалары сәйкес келеді. Электронды микроскопта (ЭМ) міндетті түрде ваккум болуы қажет, себебі ауада электрондар алысқа кете алмайды, оттегі, азот немесе көмір қышқыл газы молекулалармен кездессе, олар бөгеліп өз жолын өзгертіп шашырай кетеді. Электрондар тасқынының бағытын қажетіне қарай қуатты электр өрісі немесе магнит өрісімен өзгертуге болады. Электрондардың жылдамдығы үдесе, электрондық микроскоптың шешуші кабілеті артады.

 Электронды микроскоптың экраны мен фотопластинкада 50 000 есе үлкейтуге, фотошығаруда одан да көп есе үлкейтуге (10) болады. Қазіргі уақытта флуоресценцияланатын экраннан электронды-микроскопиялық суреттерді сандық телекамерамен компьютерге беріледі. Принтерді пайдалана отырып, суреттерді шығара алады. Электронды микроскоптың көмегімен металл мен кристалды торларда зерттеуге қолданады.

 Электронды микроскоптарда жарықтың орнына электрон сәулелері қолданылады, осыған байланысты қолданылатын қуаттың күші 50—100 кВ-қа дейін барады, ал толқын ұзындығы 0,056—0,035 А°-ге жетеді. Толқын ұзындығы неғұрлым қысқа болса, микроскоптың көрсеткіштік қабілеттілігі сорғұрлым артатынын физика курсынан жақсы білеміз. Осыған байланысты электронды микроскоптардың көрсеткіштік қабілеттілігі —1—7 А°-ға, ал үлкейткіштік қабілеттілігі 600 000-ға дейін жетеді. Электронды микроскоптың көмегімен қарайтын заттың қалыңдығы 400—600А° препаратты көруге болады, өйткені қалың препараттан электрондар өте алмайды, олардың өткізгіштік қасиеті нашар. Электронды микроскопқа препарат дайындайтын приборды ультрамикротом деп атайды. Осы аспаптың көмегімен жұқа кесінді жасап, оны объекті торына бекітіп, арнайы бояулармен бояп, электронды микроскоппен қарайды. Электрон сәулелері препарат арқылы өткенде объектінің үлкейтілген «көлеңкесі» экранға түседі.

Жасушаның бөлінуі

Бүкіл тірі ағзалардың көбеюге бейімділігі ажыратылмас бейімділік болып саналады. Олардың бұл ортақ қасиеті жасушалық бөлінумен қамтамасыз етіледі. Жасушаның жарық дүниеге келуінен келесі еншілес жасушалардың түзілуіне дейінгі тіршілігі жасушалық айналым деп аталады. Жасушалық айналым 2 кезеңге: бөлінуге даярлық -интерфаза және бөліну үдерісі - митоз (немесе өзге амалдарға) бөлінеді. Интерфаза немесе өсу фазасы жасушалық айналымның шамамен 80%-ын алады. Бұл цифр әр түрлі ағзаларға тиесі сан алуан жасуша типтерінде барынша өзгерісте болады. Интерфаза кезінде жасушалар өсіп, энергия АТФ және жұғымды заттар түрінде жинақталады, органоидтар саны артады. Пісіп жетілген, бөлінуге даяр жасушаның әдетте ядросы ірі болады. Көптеген жасуша типтерінде бөлінуге даярлық сигналы ядро көлеміне цитоплазма көлемінің қатысы қызмет етеді. Онсыз келесі бөлінудің мүмкіндігі болмайтын маңызды оқиға – еселену (репликация). Егер еселену болмаса, еншілес жасушаларға хромосома жетпей қалады да, қырғынға ұшырайды. Еселену үдерісі шамамен интерфазаның ортасында өтеді. Интерфазаның соңында және бөліне бастаған кезде жасушада хромосомалар болады, олардың әрқайсысында екі-екіден ДНҚ молекулалары орналасады. Бұл молекулалар бірінің-бірі көшірмесі болып есептеледі. Бұл молекулалар кермелену орнында (центромер) қосылып, оны ортақ нәруыз қабықшасы қаптайды. ДНҚ-ның мұндай еселенген молекулалар типі хроматидтер деп аталады. Жасуша бөліне бастаған кезде хромосоманың әрқайсысы екі жартыдан - екі хроматидтен тұрады.

 Митоздық  цикл — жасушалардың эмбриондық  дамуын, өсуін, түзілуін және жас  жасушалар арасында тұқым қуалау ақпараттарының көлемі мен құрамы жағынан тең берілуін қамтамасыз етеді. Сонымен қатар зақымданған мүшелер мен ұлпалардың қайта қалпына келуі сияқты тіршілік үшін маңызды құбылыстарды да қамтамасыз етеді. Мұны митоздық циклде — аналық жасушадағы тұқым қуалау материалының редупликациясы (екі еселенуі) мен осы материалдың жаңа ұрпақ жасушаларының арасында тең бөлінуінен көруімізге болады. Мұнда терең биологиялық мағына жатыр, өйткені ДНҚ құрылымының бұзылуы генетикалық кодтың өзгеруіне әкеледі және ол ағза үшін пайдалы белгілердің дамуын қамтамасыз ететін генетикалық ақпараттардың сақталуы мен тұқым қуалау белгілерінің берілуіне кедергі келтірген болар еді. Әрбір ағза жасушалардан тұрады. Организмнің тіршілік етуі мен дамуы жасушалардың көбеюін қамтамасыз етеді. Жасушаның бөлінуі деп бір аналық жасушадан екі немесе бірнеше жасушалардың түзілу процесін айтады.

Митоз (кариокинез)

Көп жасушалы ағзалар жасушаларының көбеюінің негізгі жолы — митоз немесе жасушалардың бөлінуі болып табылады. Жасушаның тіршілігін шартты түрде екі кезеңге бөлуге болады: интерфаза — жасушаның митоздық бөлінуге дайындық кезеңі және нағыз бөліну кезеңі. Екі кезең бірігіл митоздық кезеңді құрайды.

Митоздың негізгі жүру жолдары

Көбеюдің негізі ДНҚ-да жазылған генетикалық ақпаратты сақтау және тасымалдау болғандықтан, митоздың ең басты сипаты — ДНҚ-ның орналасатын жеріхромосомалардың күйіне байланысты.

Митоздық беліну кезінде бір диплоидті жасушадан (2п) генетикалық материалы теңдей бөлінген екі диплоидті жасуша түзіледі. Митоз төрт фазадан тұрады: 

1.Профаза.

2.Метафаза.

 

 

 

 

3.Анафаза.

 
   

4.Телофаза

 

 

 

 

 


Митоздың биологиялық маңызы зор. Көп жасушалы ағзаларда генетикалық материал сақталмаса, мүшелер мен ұлпалардың құрылыстары мен қызметі тұрақты болмас еді. Митоз тіршілік үшін қажетті мынадай құбылыстарды қамтамасыз етеді: эмбриондық даму, өсу, зақымданғаннан кейінгі органоидтер мен ұлпаларды қайта қалпына келтіру, ұлпалардың қызметі кезінде тіршілігін жойып отыратын жасушалардың орнын толықтыру (тіршілігін жойған эритроциттердің, түлеген тері, ішек эпителиі жасушаларының орнын алмастыру).

Митоз жолымен дене жасушалары бөлініп, саны көбейеді. Үздіксіз жүретін митоздық бөлінуде төрт фаза анықталады. Митозлын маңызы жаңа пайда болған екі жасушаға (сіңлілі) бірдей генетикалық ықпалы бар ДНК молекуласын өткізуі.

Тіршілік дамуының негізгі қасиеті — көбею. Көбею тіршіліктің маңызды қасиеті ретінде ағзалардың құрылымдық-қызметтік ерекшеліктерінің ұрпақтарға берілуі мен өмір бойы сақталуын қамтамасыз етеді. Көбеюдің басты маңызы — ДНК молекуласында нуклеотидтер реттілігі түрінде жазылған генетикалық акпараттың сақталуы, іске асырылуы және ұрпақтан-ұрпаққа тасымалдануы

 

Жасушалардың сыртқы зақымдаушы әсерлерге реакциясы.

Апоптоз  - грекше «жапырақтардың түсуі» деген мағынаны береді.

Апоптоз -  жасушаның алдын-ала бағдарланған гендік ақпараты бойынша тіршілігін жоюы.

Бірақ, тек соңғы 15 – 20 жыл көлемінде  ғана, жасушалардың өлуі тек дегенеративтік құбылыстар, табиғи жолдар арқылы болып қоймай, сол сияқты жасушаның өзін - өзі өлтіретіндігі, яғни жасушаның өлуінде өзі белсенді рөл атқаратындығы белгілі болды.

Апоптоз – бұл генетикалы бағдарланған, энергияны қолданумен өтетін, клетка өлімінің белсенді процесі. Бұл клеткалы өлімнің ерекше түрі.

Табиғат клетканы қорғану мен репарация механизмдерімен ғана емес, сонымен бірге өзін-өзі өлтіру немесе суицида механизмімен де қамдандырды. §Клетканың ескіруі катабиозға («ката» -төмен, «био»- өмір) және клетканың өліміне алып келеді. Клетка өлімі – бұл тіршілік әрекеті құбылысының жаңадан кері айналмайтын өсуге, көбеюге қабылетін жоғалтқан тоқтауы.

Клеткаларда өмір сүру ұзақтығы әртүрлі болады. Ұзақ өмір сүретін клеткалар бар, олар ерекше қызмет атқара отырып ағза өмірінің соңына дейін болады. Басқа клеткалар, белгілі міндетті орындауда пайда болады. Мысалы: метаморфоз кезінде, ит балық желбезектері мен құйрығын жоғалтады. Бұл мүшелер клеткаларының өмір сүру ұзақтығы белгіленіп бағдарланған.

Әйтсе де, санасатын және мойындауға тура келетін тағы бір фактор      бар. Ол барлық тірі ағзалар жасушаларының өлу заңдылығы. Бұл тіпті генетикалық ақпаратта алдын-ала бағдарланып қойылған. Оны ғылым тілінде апоптоз немесе жасушаның физиологиялық өлімі деп атайды. Апоптозға ұшыраған жасушалардың ДНҚ-лары бөлшектеніп , жасушалары бір-бірлерінен ажырап , езіліп , ыдырайды. Мұндай процестің болуы және онығ уақыты әрбәр ағзаның  геномында жазылған. Бұларға қоса ұрпақтан ұрпаққа берілетін кейбір тұқым қуалайтын аурулар болады. Олар да адам өмірінің ұзақ қысқалығына әсер етеді. Осы салада айта кететін бір жаңалық, кейінгі кезде адам геномын зерттеу нәтижелеріне байланысты мұндай тұқым қуалайтын ауруларды генотерапиямен емдеу ісі қолға алынып келе жатыр.

Информация о работе Цитология. Жасушалардың сыртқы зақымдаушы әсерлерге реакциясы