Белки

Автор работы: Пользователь скрыл имя, 10 Декабря 2014 в 16:25, реферат

Краткое описание

БЕЛКИ или ПРОТЕИНЫ - это высокомолекулярные азотсодержащие органические вещества, линейные гетерополимеры, структурным компонентом которых являются аминокислоты, связанные пептидными связями.
В природе встречаются десятки тысяч различных белков. И все они отличаются друг от друга по пяти основным признаком.

Вложенные файлы: 1 файл

1-Белки.doc

— 2.21 Мб (Скачать файл)

 


 


Белки

БЕЛКИ или ПРОТЕИНЫ - это высокомолекулярные азотсодержащие органические вещества, линейные гетерополимеры, структурным компонентом которых являются аминокислоты, связанные пептидными связями.

В природе встречаются десятки тысяч различных белков. И все они отличаются друг от друга по пяти основным признаком.

Основные различия в строении белковых молекул

    1. По количеству аминокислот
    2. По соотношению количества различных аминокислот. Например, в белке соединительной ткани коллагене 33% от общего количества аминокислот составляет глицин, а в молекуле белкового гормона инсулина, вырабатываемого в поджелудочной железе, содержание глицина гораздо меньше – всего 8%.
    3. Различная последовательность чередования аминокислот. Это означает, что даже при одинаковом соотношении разных аминокислот в каких-нибудь двух белках порядок их расположения этих аминокислот различен, то это будут разные белки.
    4. Количество полипептидных цепей в различных белках может варьировать от 1 до 12, но если больше единицы, то обычно четное (2, 4, 6 и т.п.)
    5. По наличию небелкового компонента, который называется «ПРОСТЕТИЧЕСКАЯ ГРУППА». Если ее нет, то это – простой белок, если есть – сложный белок

Протеиногенными называются 20 аминокислот, которые кодируются генетическим кодом  и включаются в белки в процессе трансляции.

КЛАССИФИКАЦИЯ АМИНОКИСЛОТ.

По растворимости радикалов к воде

Физико-химическая– основана на различиях в физико-химических свойствах аминокислот.

    1. Гидрофобные аминокислоты (неполярные).

2)     Гидрофильные незаряженные (полярные) аминокислоты.

3)     Отрицательно заряженные  аминокислоты. Сюда относятся аспарагиновая  и глутаминовая кислоты.

4)      Положительно заряженные  аминокислоты: аргинин, лизин и гистидин.

Такие свойства характерны для свободных аминокислот. В белке же ионогенные группы общей части аминокислот участвуют в образовании пептидной связи, и все свойства белка определяются только свойствами радикалов аминокислот.

Химическая классификация - в соответствии с химической структурой радикала аминокислоты

Алифатические и гетероциклические

Биологическая классификация.

а) Незаменимые аминокислоты, их еще называют "эссенциальные". Они не могут синтезироваться в организме человека и должны обязательно поступать с пищей. Их 8 и еще 2 аминокислоты относятся к частично незаменимым. Незаменимые:  метионин, треонин, лизин, лейцин, изолейцин, валин, триптофан, фенилаланин. Частично незаменимые: аргинин, гистидин.

б) Заменимые (могут синтезироваться в организме человека). Их 10:  глутаминовая кислота, глутамин, пролин, аланин, аспарагиновая кислота, аспарагин, тирозин, цистеин, серин и глицин. Из них 2 аминокислоты – цистеин и тирозин, называются условно заменимыми, так как синтезируются из незаменимых аминокислот метионина и фенилаланина.

По биохимической роли: аминокислоты делятся на

1)    гликогенные – через ряд химических превращений поступают на путь гликолиза (окисления глюкозы) – Гли, Ала, Тре, Вал, Аск, Глк, Арг, Гис, Мет.

2)    кетогенные – участвуют в образовании кетоновых тел - Лей, Илей, Тир, Фен.

Биологические функции аминoкислoт

В живых организмах аминокислоты выполняют ряд функций.

Стpуктуpные элeменты пeптидов и белков. В состав белков входят 20 протеиногенных аминокислот, которые кодиpyютcя генетичеcким кодом и постоянно oбнapyживaютcя в белкax. Некоторые из них пoдвеpгaютcя посттрансляционной модификации, т.е. мoгyт быть фocфopилиpовaны, aцилиpoваны или гидpoксилирoваны.

2. Структурные элeмeнты дpyгих природных соeдинeний. Аминoкиcлoты и их производные входят в cocтaв коферментов, желчных кислот, антибиотиков.

3. Пepeнoсчики сигналов. Некоторые из aминoкиcлoт являются нейромедиаторами или предшественниками нейромедиаторов, медиаторов или гормонов.

4. Метаболиты. Аминoкиcлоты — важнейшие, а некоторые из них жизненно важные компоненты питания. Некоторые aминoкиcлoты принимают участие в обмене веществ, нaпpимep, cлyжaт донорами азота. Непротеиногенные aминoкиcлoты oбpaзyютcя в качестве прoмeжyточныx продуктов при биоcинтeзе и деградации протеиногенных аминокислот  или в цикле мочевины.

Пептидная связь

Главными структурными единицами белкой и пептидов являются остатки аминокислот, связанные карбоксамидной пептидной связью  между α-карбоксильной группой одной кислоты и  и α-аминогруппой другой аминокислоты.

ТИПЫ СВЯЗЕЙ МЕЖДУ АМИНОКИСЛОТАМИ В МОЛЕКУЛЕ БЕЛКА

    2 группы:

1.КОВАЛЕНТНЫЕ СВЯЗИ - обычные прочные  химические связи.

а) пептидная связь

б) дисульфидная связь

2.НЕКОВАЛЕНТНЫЕ (СЛАБЫЕ) ТИПЫ СВЯЗЕЙ:  а) Водородная  связь;  б) ионная связь;  в) Гидрофобное  взаимодействие

ПЕПТИДНАЯ СВЯЗЬ.

Формируется за  счет  COOH-группы  одной  аминокислоты и NH2-группы соседней аминокислоты. В названии пептида окончания названий всех аминокислот, кроме последней, находящейся на «С»-конце молекулы меняются на «ил». Например, тетрапептид: валил-аспарагил-лизил-серин

 


 

ПЕПТИДНАЯ СВЯЗЬ формируется ТОЛЬКО ЗА СЧЕТ АЛЬФА-АМИНОГРУППЫ И СОСЕДНЕЙ  COOH-ГРУППЫ ОБЩЕГО ДЛЯ ВСЕХ АМИНОКИСЛОТ ФРАГМЕНТА МОЛЕКУЛЫ. Если  карбоксильные и аминогруппы входят в состав радикала, то они никогда не участвуют в формировании пептидной связи в молекуле белка.


Сама пептидная связь является частично двойной в силу лактим-лактамной таутомерии. Поэтому вокруг нее невозможно вращение, а сама она по прочности в полтора раза превосходит обычную ковалентную связь.  На рисунке видно, что из каждых трех ковалентных связей в стержне молекулы пептида или белка две являются простыми и допускают вращение, поэтому стержень (вся полипептидная цепь) может изгибаться в  пространстве.

К ковалентным связям в молекуле белка помимо пептидной, относится также ДИСУЛЬФИДНАЯ СВЯЗЬ.



Дисульфидная связь - это ковалентная связь. Однако биологически она гораздо  менее устойчива, чем пептидная связь. Это  объясняется тем, что в организме интенсивно протекают окислительно-восстановительные процессы. Дисульфидная связь может возникать между разными  участками одной и той же полипептидной цепи, тогда она удерживает эту цепь в изогнутом состоянии. Если дисульфидная связь возникает  между двумя полипептидами, то она объединяет их в одну молекулу.

СЛАБЫЕ ТИПЫ СВЯЗЕЙ

В десятки раз слабее ковалентных связей. Слабые типы связей - это физико-химические взаимодействия. Поэтому они очень чувствительны к изменениям условий среды (температуры, pH среды, ионной силы раствора и так далее).

ВОДОРОДНАЯ СВЯЗЬ - это связь, возникающая между двумя электроотрицательными атомами за счет атома водорода, который соединен с одним из  электроотрицательных атомов ковалентно (см. рисунок).



Водородная связь примерно в 10 раз слабее, чем ковалентная. Если водородные связи повторяются многократно, то они   удерживают полипептидные цепочки с высокой прочностью.   Водородные связи очень чувствительны к условиям внешней среды и присутствию в ней веществ, которые сами способны  образовывать такие связи (например, мочевина).

ИОННАЯ СВЯЗЬ - возникает между положительно и отрицательно заряженными группировками (дополнительные карбоксильные и аминогруппы), которые встречаются в радикалах лизина, аргинина, гистидина, аспарагиновой и глутаминовой кислот.



ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ - неспецифическое притяжение, возникающее в молекуле белка между радикалами гидрофобных аминокислот - вызывается силами Ван-дер-Ваальса и дополняется выталкивающей силой воды.

Номенклатура пептидов

Пептидная цепь имеет одно направление и два разных конца — N-конец, несущий свободную аминогруппу первой аминокислоты, и С-конец, несущий карбоксильную группу последней аминокислоты. Напомним, что в белках и пептидах аминокислотные остатки связаны в цепочку последовательно. Для того чтобы назвать конкретный пептид, достаточно перечислить (начиная с N-конца) последовательность входящих в его состав аминокислотных остатков в трехбуквенном или однобуквенном коде. Например, аминокислотная последовательность пептидного гормона ангиотензина Il читается следующим образом: Asp-Аrg-Vаl-Туr-Ile-His-Pro-Phe.

При названии пептидов к сокращенному названию аминокислоты добавляют суффикс –ил, за исключением последней С-концевой аминокислоты. Например, тетрапептид Сер-Гли-Про-Ала читается как срилглицилпрлилаланин.

Цепь повторяющихся групп —NH—CH—CO— называется пептидным остовом.  Какой бы длины ни была бы полипептидная цепь, всегда в основе ее - стержень молекулы, абсолютно  одинаковый у всех белков.  На этом стержне сидят как боковые веточки радикалы аминокислот. Числом, соотношением и чередованием этих радикалов один  белок  отличается  от другого. Мономеры аминокислот, входящие в состав пептидов и белков, называются аминокислотными остатками.

Общая характеристика  пептидов.

Пептид состоит из 2 и более аминокислотных остатков, связанных пептидными связями. Пептиды, содержащие менее чем  10 аминокислотных остатков, называются олигопептидами.  Пептиды, содержащие более чем  10 аминокислотных остатков, называются полипептидами. Столько же аминокислот могут содержать и некоторые небольшие белки. Условная граница между полипептидами и белками лежит в области молекулярной массы 6000.

Полипептиды млекопитающих содержат  пептидные связи,  образованные между альфа-аминогруппой и альфа карбоксильной группой протеиногенных аминокислот. Однако в состав  некоторых полипептидов могут входить и другие аминокислоты или производные протеиногенных аминокислот. Атипичным пептидом является трипептид глутатион (гамма-глутамилцистеинилглицин), в котором N- концевой глутамат и цистеин не связаны альфа-пептидной связью.

Биологическая роль пептидов.

  1. Пептидами являются многие важнейшие гормоны человека, например, глюкагон, окситоцин, вазопрессин.
  2. Пептиды, регулирующие процессы пищеварения, например, гастрин, холецистокинин.
  3. Пептиды, регулирующие тонус сосудов и артериальное давление, например, ангиотензин II, брадикинин.
  4. Пептиды, регулирующие аппетит, например, лептин, b -эндорфины.
  5. Пептиды, обладающие обезболивающим действием, например, опиоидные пептиды (энкефалины и эндорфины).
  6. Пептиды, участвующие в регуляции высшей нервной деятельности, в биохимических процессах, связанных с механизмами сна, памяти, обучения и т.д.
  7. Трипептид глутатион выполняет функцию защиты клетки от окислительных повреждений свободными радикалами.

Полипептиды состоят из  менее чем 50 аминокислотных остатков

Медицинское значение.

Пептиды используются в качестве лекарственных препаратов, например, пептидами являются некоторые антибиотики, противоопухолевые препараты.

В процессе распада эндогенных белков образуются среднемолекулярные пептиды (СМП). Основная часть СМП представлена полипептидами с молекулярной массой 300—5000 Д.  СМП  обладают разнообразной биологической активностью. В физиологических условиях 95% среднемолекулярных пептидов удаляются главным образом путем гломерулярной фильтрации.

Ослабление экскреторной функции почек и неполный распад белков (протеолиз) приводят к увеличению концентрации СМП в плазме (сыворотке) крови. Причем концентрация средних молекул в сыворотке больного может в 8—10 раз превышать норму.

Накопление СМП приводит к нарушению микроциркуляции, а также  транспорта ионов натрия и калия через мембраны, подавлению иммунного ответа организма, угнетению активности ряда ферментов. В клинической практике СМП определяют как критерий интоксикации.

Уровни организации белка

Последовательность аминокислотных остатков, соединенных между собой пептидной связью называют первичной структурой белковой молекулы. Она кодируется структурным геном каждого белка.

Вторичная структура - это упорядоченное строение полипептидных цепей, обусловленное водородными связями между группами С=О и N-H разных аминокислот.

Наиболее рапространенные способы укладки  вторичной структуры:

Альфа-спираль-между NH группой 1 аминокислоты и СО другой

1) Альфа-спираль - имеет определенные  характеристики: ширину, расстояние между  двумя  витками спирали. Для белков характерна правозакрученная спираль. В этой спирали на 10 витков приходится 36 аминокислотных остатков. У всех  пептидов, уложенных в такую спираль, эта спираль абсолютно одинакова. Фиксируется  альфа-спираль  с  помощью водородных связей  между NH-группами одного витка спирали и С=О группами соседнего   витка. Эти водородные связи расположены параллельно оси спирали и многократно повторяются, поэтому прочно удерживают   спиралеобразную структуру.

Бета-складчатая структура - или структура складчатого листа. Фиксируется также водородными связями между С=О и NH-группами. Фиксирует два участка полипептидной цепи. Эти цепи могут быть параллельны или антипараллельны. Если такие связи  образуются в пределах одного пептида, то они всегда антипараллельны, а если между разными полипептидами, то параллельны.

3) Нерегулярная структура (синонимы: беспорядочный клубок, аморфные области) –  тип вторичной структуры, в котором расположение различных участков полипептидной цепи относительно друг друга не имеет регулярного (постоянного) характера, поэтому нерегулярные  структуры могут иметь различную конформацию.

Информация о работе Белки