Загрязнение окружающей среды

Автор работы: Пользователь скрыл имя, 12 Мая 2013 в 15:07, реферат

Краткое описание

На всех стадиях своего развития человек был тесно связан с окружающим миром. Но с тех пор как появилось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилось, расширился объём этого вмешательства, оно стало многообразнее и сейчас грозит стать глобальной опасностью для человечества. Расход невозобновимых видов сырья повышается, все больше пахотных земель выбывает из экономики, так на них строятся города и заводы. Человеку приходится все больше вмешиваться в хозяйство биосферы - той части нашей планеты, в которой существует жизнь. Биосфера Земли в настоящее время подвергается нарастающему антропогенному воздействию.

Вложенные файлы: 1 файл

рефер по биологии.doc

— 97.00 Кб (Скачать файл)

Тяжёлые металлы опасны тем, что способны к биоаккумуляции. Поступая вместе с пищей и жидкостями, металлы удерживаются и накапливаются  в теле, как в фильтре. Организм не может освободиться от тяжёлых  металлов, так как они прочно связываются  с белками. Биоаккумуляция усугубляется в пищевой цепи, и организмы, находящиеся на вершине пищевой пирамиды, имеют самые высокие дозы ядохимикатов. Эта доза может стать в сто тысяч раз выше, чем во внешней среде. Такое накопление вещества при прохождении через пищевую цепь называют биоконцентрированием. Эти процессы трудно заметить на ранних стадиях до достижения опасного уровня. При достижении опасного уровня практически невозможно исправить ситуацию.

Одними из важнейших  загрязнителей среды являются соединения азота, поступающие в воздух, воду, почву. Медико–экологическую проблему составляют нитраты, нитриты, которые способствуют развитию многочисленных заболеваний.

Ситуацию осложняют  синергические эффекты. Ядохимикаты  редко встречаются отдельно друг от друга, а два или более ядов вместе дают эффект во много раз превосходящий сумму действий каждого из них. Сочетаясь вместе, яды, поступая в организм человека, ослабляют иммунную систему, и человек становится более подверженным воздействию инфекций и паразитов.

Способы очистки питьевой воды

Самый распространённый способ дезинфекции воды – кипячение. Как показывают данные последних  исследований, этот старинный метод, действительно, убивает бактерии, но одновременно при кипячении увеличивается  концентрация нитратов, соли, тяжёлых металлов. Кроме того, некоторые неорганические загрязнения, содержащиеся в водопроводной воде, при кипячении не разлагаются.

Важно и то, что при  кипячении в осадок выпадают кальций, натрий, магний, фтор и другие необходимые  организму биогенные химические элементы, которые содержатся в воде в растворённом виде. Таким образом, вода становится мёртвой, отчасти бесполезной для организма, который лишается жизненно необходимых химических элементов. Особенно опасно это для детей – ведь от этого зависит их рост, правильное развитие, костеобразование. Болезни костеобразования, кариес, остеохондроз, болезни пищеварения, крови, смещение кислотно–щелочного баланса, зоб и т.д. – всех этих проблем можно было бы избежать употреблением «правильной», живой воды.

Ещё один распространённый способ дезинфекции, который подразумевает использование хлора, также не лишён подводных камней. Как доказано современной наукой, хлор является опасным для здоровья человека, он образует в воде так называемые хлорорганические соединения, которые являются канцерогенами.

Использование домашних фильтров – один из надёжных способов очистки воды, но и в этом случае не мешает осторожность. Если фильтр низкого  качества, то, проходя через него, вода может вместе с загрязнениями  оставить в очистителе и полезные компоненты, а затем «попытается» снова забрать их из вашего организма.

ПАРНИКОВЫЙ  ЭФФЕКТ

Еще в 1827 году французский  физик Жозеф Фурье предположил, что атмосфера земли выполняет  функцию своего рода стекла в теплице: воздух пропускает солнечное тепло, не давая ему при этом испариться обратно в космос. И он был прав. Этот эффект достигается благодаря некоторым атмосферным газам второстепенного значения, каковыми являются, например, водяные испарения и углекислый газ. Они пропускают видимый и «ближний» инфракрасный свет, излучаемый солнцем, но поглощают «далекое» инфракрасное излучение, имеющее более низкую частоту и образующееся при нагревании земной поверхности солнечными лучами. Если бы этого не происходило, Земля была бы примерно на 30 градусов холоднее, чем сейчас, и жизнь бы на ней практически замерла.

Исходя из того, что  «естественный» парниковый эффект –  это устоявшийся, сбалансированный процесс, вполне логично предположить, что увеличение концентрации «парниковых» газов в атмосфере должно привести к усилению парникового эффекта, который в свою очередь приведет к глобальному потеплению климата. Количество СО2 в атмосфере неуклонно растет вот уже более века из–за того, что в качестве источника энергии стали широко применяться различные виды ископаемого топлива (уголь и нефть). Кроме того, как результат человеческой деятельности в атмосферу попадают и другие парниковые газы, например метан, закись азота и целый ряд хлоросодержащих веществ. Несмотря на то, что они производятся в меньших объемах, некоторые из этих газов куда более опасны с точки зрения глобального потепления, чем углекислый газ.

Сегодня уже мало кто  из ученых, занимающихся этой проблемой, оспаривает тот факт, что деятельность человека приводит к повышению концентрации парниковых газов в атмофере. По мнению Межправительственной комиссии по изменению климата, «увеличение концентрации парниковых газов приведет к разогреву нижних слоев атмосферы и поверхности земли... Любое изменение в способности Земли отражать и поглощать тепло, в том числе вызванное увеличением содержания в атмосфере тепличных газов и аэрозолей, приведет к изменению температуры атмосферы и мировых океанов и нарушит устойчивые типы циркуляции и погоды».

Тем не менее, ведутся  ожесточенные споры вокруг того, какое  конкретно количество этих газов вызовет потепление климата и в какой степени, а также как скоро это произойдет. Дело в том, что даже когда изменение климата действительно происходит, в этом трудно быть стопроцентно уверенным. Мировые средние температуры могут сильно колебаться в пределах нескольких лет и десятилетий – причем по естественным причинам. Проблема в том, что считать средней температурой, и на основании каких критериев судить, действительно ли она изменилась в ту или другую сторону.

В конце восьмидесятых – начале девяностых годов несколько лет подряд среднегодовая глобальная температура была выше обычной. Это вызвало опасения в том, что вызванное человеческой деятельностью глобальное потепление уже началось. Среди ученых существует консенсус, что за последние сто лет среднегодовая глобальная температура поднялась на 0,3 – 0,6 градусов Цельсия. Однако среди них нет согласия в том, что именно вызвало это явление. Трудно с уверенностью сказать, происходит глобальное потепление или нет, так как наблюдаемый рост температуры все еще находится в пределах естественных температурных колебаний.

Неопределенность в  вопросе глобального потепления порождает скепсис по поводу грозящей опасности. Проблема заключается в  том, что когда гипотеза об антропогенных  факторах глобального потепления подтвердится, уже поздно будет что–либо предпринимать.

 
Возможные последствия глобального  потепления климата

По мнению многих ученых, если сохранится тенденция глобального  потепления, это приведет к изменению  погоды и увеличению количества осадков, что, в свою очередь, приведет к подъему уровня мирового океана. Ученые уже отметили изменения в картине выпадения осадков. Они подсчитали, что в США и бывшем СССР последние 30–40 лет выпадает осадков на 10 процентов больше, чем в прошлом. В то же время, количество осадков над экватором сократилась на те же десять процентов. Дальнейшее изменение в системе выпадения осадков окажет огромное воздействие на сельское хозяйство, смещая зоны возделывания культур в северные районы Северной Америки и Евразии. Наиболее благоприятные условия для выращивания культур сложатся в сельскохозяйственных регионах России и обильные осадки будут выпадать в Северной Африке, где засуха продолжается с 1970–го года. Кроме того, повышение температуры увеличит испарение влаги с поверхности океана. Это приведет к увеличению выпадения осадков на 11 процентов.

Последствия потепления климата будут ощущаться на Северном и Южном полюсах, где увеличившаяся  температура приведет к подтаиванию  ледников. По расчетам ученых увеличение температуры на 10 градусов по Цельсию, вызовет повышение уровня мирового океана на 5–6 метров, что приведет к затоплению многих прибрежных территорий во всем мире.

ОЗОНОВЫЕ ДЫРЫ

В начале 80-х годов  английские и японские ученые выяснили, что с конца 70-х годов над Антарктикой непрерывно истощается озоносфера - слой атмосферного озона. Наземные и спутниковые измерения обнаружили своего рода озоновую "дыру", в которой озона в столбе воздуха было на 30-50% меньше нормы. Эта "дыра" в Антарктике наблюдается весной (сентябрь-ноябрь), в другие сезоны содержание озона ближе к норме. Заметнее всего это уменьшение на высотах 15-25 км, в слое с максимальным содержанием озона. Позднее выяснилось, что озона в атмосфере становится все меньше и меньше также в средних и высоких широтах Северного полушария зимой - весной (январь - март), особенно над Европой, США, Тихим океаном, Европейской частью России, Восточной Сибирью и Японией.

Детальные измерения  показали, что при общем истощении  озоносферы содержание озона возрастало, в частности, над Лабрадором (северо-восток Канады) в январе. Временами (например, в 1988 г.) оно увеличивалось и над Антарктикой. Однако в целом содержание озона в атмосфере за последние два десятилетия значительно уменьшилось.

Жизнь на Земле немыслима  без озонового слоя, предохраняющего все живое от вредного ультрафиолетового излучения Солнца. Исчезновение озоносферы привело бы к непредсказуемым последствиям - вспышке рака кожи, уничтожению планктона в океане, мутациям растительного и животного мира. Поэтому так важно понять причины возникновения озоновой "дыры" над Антарктикой и уменьшения содержания озона в Северном полушарии.

Озон образуется в  верхней стратосфере (40-50 км) при  фотохимических реакциях с участием кислорода, азота, водорода и хлора. В нижней стратосфере (10-25 км), где озона больше всего, главную роль в сезонных и более длительных изменениях его концентрации играют процессы переноса воздушных масс. Содержание озона здесь определяют химический состав атмосферы и долговременные (с периодом более 10 лет) вариации процессов переноса.

Разрушается же он, взаимодействуя с выбрасываемыми в атмосферу  веществами, содержащими хлор (фреонами и галонами), которые используют в различных отраслях промышленности. Многочисленные измерения и расчеты  свидетельствуют о том, что эти реакции протекают, в основном, на поверхности полярных стратосферных облаков, которые образуются здесь при очень низких (менее -80°С) температурах. После окончания полярной ночи, в сентябре, с восходом солнца образуются атомы хлора, разрушающие молекулы озона. Наблюдения показали, что подобный химический механизм действует и в Арктике (в январе - марте). Температура нижней стратосферы в Арктике выше, чем в

Антарктике, поэтому полярные стратосферные облака здесь образуются реже, так что озоновая "дыра" регистрируется главным образом над Антарктикой. Ключевой элемент этого механизма разрушения озона - именно полярные стратосферные облака, образующиеся только при очень низких температурах. Такие температуры над Антарктикой обусловлены сильными западными ветрами, которые формируют своеобразный полярный "барьер" (его называют также полярным вихрем), препятствуя межширотному обмену теплом и озоном.

При любом обсуждении проблемы озоновой "дыры" возникают  следующие вопросы:

  • почему она проявилась только в конце 80-х годов;
  • существуют ли долговременные процессы в стратосфере, способствующие образованию температурного "барьера", и как они связаны с наблюдаемыми аномалиями?

Ответы на них надо искать в системе "океан - атмосфера". Изменения циркуляции атмосферы вызваны стационарными планетарными волнами, которые проникают в стратосферу в зимне-весенний период, сильно влияя на распределение озона и других ее составляющих в средних и высоких широтах. Один из источников этих волн - разные температуры над поверхностями континентов и океанов, поэтому изменения температуры океанской поверхности сказываются на волновой активности. При длительном же ослаблении волновой активности усиливаются западные ветры в стратосфере, охлаждается ее нижняя часть, формируются полярные стратосферные облака и, тем самым, условия для разрушения озона. Циркуляция в стратосфере за последние 20 лет могла сильно измениться. Так что основной причиной озоновой "дыры" в Антарктике вполне может быть длительное ослабление волновой активности стратосферы, связанное с очень медленными процессами в Мировом океане.

Сопоставив изменения  волновой активности стратосферы и  содержания озона в 1979-1992 гг., специалисты  заключили, что ослаблению активности отвечает снижение концентрации озона  в средних и высоких широтах из-за меньшего межширотного обмена. Похоже, что летом 1980 г. резко изменилась циркуляция в стратосфере и возникли условия для образования озоновой "дыры".

Чем же вызваны столь  серьезные изменения? Видимо, это  результат сразу нескольких крупномасштабных процессов в Мировом океане: "капризов" Эль-Ниньо в Тихом океане (теплое сезонное поверхностное течение у берегов Эквадора и Перу, параметры которого меняются год от года), аномалий температур значительных участков поверхности в Атлантическом и Индийском океанах. Из общих физических соображений ясно, что как ежегодные, так и более длительные изменения в стратосфере связаны прежде всего с аномалиями температуры океанов. Современные математические методы позволяют выявить наиболее характерные черты этих связей и проследить их эволюцию. Результаты соответствующих расчетов свидетельствуют о том, что изменения концентрации озона в атмосфере, циркуляции в стратосфере, температуры поверхности Атлантического океана хорошо согласуются между собой. Так что, в частности, изменения концентрации озона в атмосфере Северного полушария в зимнее время могут быть результатом температурных аномалий в Атлантике.

Подобный подход позволяет  не только установить подлинные причины  наблюдаемых изменений в озоносфере, но и оценить влияние на нее антропогенных факторов, о котором столько говорилось в последние годы. Это влияние оказывается наибольшим над Западной Европой (более 70%), восточным побережьем США (60-70%), Московским регионом и Токио (60%). Снижение же содержания озона над средними широтами Тихого океана и северной Европой вызвано, главным образом, естественными долговременными процессами. Естественные причины привели и к росту концентрации озона над Лабрадором - антропогенные факторы могут способствовать лишь его разрушению.

Информация о работе Загрязнение окружающей среды