Биоповреждения строительных материалов

Автор работы: Пользователь скрыл имя, 21 Сентября 2014 в 13:06, реферат

Краткое описание

В настоящее время важной экологической проблемой является биоповреждение микроскопическими грибами промышленных и строительных материалов и сооружений, в частности в городской среде. В XXI веке в городах будет проживать не менее 90% населения планеты и находиться внутри городских зданий около 95% своего времени. Это означает, что для сохранения здоровья человечества необходимо обеспечить высокое качество внутренней среды городских построек. Микроскопические грибы резко ухудшают эксплуатационные характеристики тех материалов, на которых растут, вызывая биоповреждения и биоразрушения последних. Крайним проявлением такого ухудшения в отношении бетонных элементов является их частичное или полное обрушение.

Содержание

1. ВВЕДЕНИЕ 3
2. БИОПОВРЕЖДЕНИЯ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ 5
2.1. СУЩНОСТЬ ПОНЯТИЯ «БИОПОВРЕЖДЕНИЯ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ» 5
2.2. СПОСОБЫ ЗАЩИТЫ МАТЕРИАЛОВ ОТ БИОПОВРЕЖДЕНИЙ 9
3. ЗАКЛЮЧЕНИЕ 15
4. ЛИТЕРАТУРА 17

Вложенные файлы: 1 файл

ЭКОЛОГИЯ работа.doc

— 101.00 Кб (Скачать файл)

Водорастворимые антисептики в зависимости от вида химических препаратов и их сочетаний различаются на вымываемые и трудновымываемые.

К наиболее широко распространенным и легко доступным вымываемым антисептикам относятся фтористый натрий и кремнефтористый аммоний.

Фтористый натрий обладает высокой диффузионной способностью проникновения в сырую (до 40…50% влажности) древесину, не летуч, не горюч.

Кремнефтористый аммоний обладает высокой растворимостью в воде (до 20%), высокотоксичен к домовым грибам. Широко применяется для антисептирования деревянных конструкций, находящихся в условиях, где исключено вымывание соли в процессе эксплуатации.

К трудновымываемым водорастворимым антисептикам относится препарат ХМ -11, состоящий из бихромата натрия или бихромата калия в сочетании с равным количеством медного купороса. Основная область применения препарата - опоры ЛЭП, столбы оград и т.д., но в то же время защиту древесины от домовых грибов препарат не обеспечивает.

Антисептическая эффективность и область применения антисептиков группы ХМ, относящихся к трудновымываемым водорастворимым антисептикам, может быть расширена путем добавки в них различных солей.

Из водорастворимых антисептиков на практике хорошо себя зарекомендовали такие препараты как «Крам», предназначенный для работы в закрытых помещениях, «Биодекор», применяющийся как для внутренних, так и наружных работ, а также «Сенеж»-ОБ», «Финакс» и «КСД-А», которые помимо биозащитных обладают и огнезащитными свойствами. Расход этих препаратов в среднем составляет 0,4 … 0,6 л на 1 кв.м. поверхности обрабатываемых деревянных деталей.

К органикорастворимым антисептикам относятся препараты на основе нафтената меди, которые растворяются в нефтепродуктах. Эти антисептики используют для защиты пролетных строений деревянных мостов, конструкций зданий с высокой влажностью внутри помещений.

К маслянистым антисептикам (пропиточным маслам) относятся каменноугольное, антраценовое, креозотовое и сланцевое масла. Это традиционные антисептики, хорошо защищающие древесину в самых тяжелых условиях эксплуатации на длительный срок. В основном эти антисептики применяются для пропитки деревянных шпал, свай, опор линий связи и т.д.

Эти масла относятся к канцерогенным веществам, поэтому обращение с ними требует соблюдения правил техники безопасности и производственной санитарии.

К антисептическим пастам относятся пасты марок ПП, ПАЛМ-Ф и ПАФ-ПВА. Пасты марок ПП (ПП-100, ПП-150) изготавливаются на базе фтористого натрия с добавкой в качестве связующего каменноугольного лака и каолина в качестве наполнителя. Составляющими в пасте марки ПАЛМ-Ф являются фтористый натрий, каолин, латекс, вода. Связующим в пастах марки ПАФ-ПВА является поливинилацетатная эмульсия.

Пасты работают по принципу диффузионной пропитки и выпускаются в виде концентрата. Требуемую для нанесения пасты на поверхность деревянного элемента консистенцию получают путем добавления в нее необходимого количества воды. Паста применяется для антисептирования опорных частей деревянных элементов, узловых соединений в конструкциях, где имеется опасность кратковременного периодического увлажнения. Допускается применение паст как в неэксплуатируемых, так и в эксплуатируемых помещениях.

Различают следующие способы антисептирования:

  • Поверхностная пропитка (нанесение антисептика на поверхность древесины). Растворы наносят опрыскивателем, кистью или погружением в него древесины. Принцип этого способа заключается в непродолжительном увлажнении поверхности древесины антисептиками, в результате чего соли проникают в древесину на небольшую глубину. Глубина пропитки составляет от 1 до 5 мм и зависит от рецептуры антисептика и времени нанесения.
  • Панельная пропитка. Способ заключается в наложении гидроизолирующей панели на поверхность древесины и непрерывной передачи под нее антисептика. Панельная пропитка используется преимущественно для деревянных памятников архитектуры.
  • Диффузионная пропитка. На поверхность сырой древесины наносят антисептические пасты и выдерживают древесину в условиях, исключающих их высыхание в течение 2-3 недель. На этом принципе основана и панельная пропитка.
  • Пропитка по способу «прогрев-холодная ванна». Древесину нагревают, а затем помещают в холодный раствор антисептика. При прогреве древесины, находящийся в ней воздух расширяется и частично выходит наружу. При погружении в холодный раствор она охлаждается, воздух в ней сжимается и за счет создавшегося разрежения, антисептик всасывается внутрь древесины.
  • Пропитка по способу «вакуум - атмосферное давление – вакуум». Суть та же, что и в предыдущем способе, т.е. антисептик внедряется в древесину за счет разности давления. В автоклаве древесину выдерживают под вакуумом, затем подают антисептик и соединяют автоклав с атмосферой. После выдержки жидкость удаляют из автоклава и вновь создают вакуум для осушения поверхности.

Сложность выбора методов защиты от биоповреждений заключается в том, что сами защитные химические средства не всегда являются нейтральными по отношению к биоцетоническим и популяционным сообществам. Поэтому особое внимание следует обращать на предотвращение токсикологических последствий использования данных средств защиты.

Биоповреждающий процесс включает в себя многие аспекты, поэтому вопросы защиты строительных материалов, изделий и конструкций могут быть успешно решены лишь при совместной работе специалистов в области строительного материаловедения, экологии, микробиологии, химии и других наук. Особое внимание необходимо уделять разработке природных экологически безвредных средств защиты.

 

 

 

 

3. ЗАКЛЮЧЕНИЕ

 

 

Бурное развитие техники, освоение необжитых территорий, активное градостроительство, создание новых материалов сделали проблему биоповреждений одной из наиболее актуальных и научно-практических проблем.

Бактерии, грибы, лишайники, водоросли, высшие растения, простейшие, кишечнополостные, черви, мшанки, моллюски, членистоногие, иглокожие, рыбы, птицы, млекопитающие – таков перечень групп, представители которых выступают в роли биоповреждающих агентов, нанося огромный ущерб хозяйству человека.

Мишенью биоповреждающего действия стали кирпичные и каменные здания и строительные сооружения, древесина и разнообразные изделия из нее, металл и металлические изделия.

Биоповреждения возникают в результате взаимодействий материалов и изделий с компонентами биосферы. Следовательно, решение проблемы сводится к оптимизации этих отношений. Человеку нужно, чтобы создаваемые им изделия были защищены от пагубного воздействия живых организмов в течение всего срока эксплуатации, после чего их разрушение не только не возбраняется, но даже стимулируется (биоразрушениями отходов занимается новое перспективное направление науки и промышленности).

Важно отметить, что «золотой ключик» в защите от биоповреждений создать невозможно. В настоящее время мы располагаем целым арсеналом защитных средств. Вот некоторые из них.

Древесину защищают от поражения грибами, пропитывая антисептиками (бихромат натрия, фтористый и кремнефтористый натрий, пентахлорфенолят натрия, нафтенат меди, антраценовое масло и др.). Это увеличивает срок ее службы в 2–3 р, что в масштабах страны дает огромный экономический эффект.

Для защиты от биоповреждений синтетических полимерных материалов успешно используются салициланилид, 8-оксихинолят меди, мышьякоорганические и оловоорганические вещества, тиурам, цимид, 2-оксидифенил, трилан и др.

Общим для большинства защитных мер пороком является их узкая специализация: одни объекты они защищают хорошо, другие плохо. Их разработчики добиваются высокой эффективности в отдельных конкретных случаях, зато малейшее изменение эколого-хозяйственной ситуации сводит положительный эффект к нулю.

Поскольку разработка и внедрение каждого нового средства требует огромных затрат, а окупаются они далеко не сразу, гораздо целесообразнее сосредоточивать усилия на комплексной защите от биоповреждений, объединяющей как экологические, так и технологические методы и пригодной для обслуживания широкого круга ситуаций.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. ЛИТЕРАТУРА

 

  1. Братошевская В.В., Иванченко В.Т., Мирсоянов В.Н. «Архитектурная и градостроительная экология»: Учебное пособие. Краснодар: Изд-во ГОУВПО «КубГТУ» - 2006.
  2. Румянцева Е.Е., Губернский Ю.Д., Кулакова Т.Ю. «Экологическая безопасность строительных материалов, конструкций и изделий». М.: Университетская книга, 2005 – 200с.
  3. 1. Кузнецова Л.С. «Полисепт»-полимерный биоцид пролонгированного действия. Москва, МГУ ПБ.2001.
  4. http://adilar.ru/adilart_66.html
  5. http://rus-plotnik.ru/building/?prod_id=178

 

 

 

 


 



Информация о работе Биоповреждения строительных материалов