Химия в организме человека

Автор работы: Пользователь скрыл имя, 28 Апреля 2013 в 20:49, курсовая работа

Краткое описание

Химия сегодня прочно вошла в нашу жизнь вместе с новыми материалами, продуктами, лекарствами, синтетическими волокнами, пластиками. В мире появляется все больше информации о новых веществах и теориях химии, процессах свойствах веществ. Но по-прежнему химия – это часть нас.
Все живые организмы на Земле, в том числе и человек, находятся в тесном контакте с окружающей средой. Жизнь требует постоянного обмена веществ в организме. Поступлению в организм химических элементов способствуют питание и потребляемая вода.

Содержание

Введение………………………………………………………………………..3
Глава 1.Химия в организме…………………………………………………..
Химия роста………………………………………………………….
Химия мышечной работы…………………………………………..
Химия нервной системы……………………………………………
Глава 2. Химические элементы в организме человека……………………
2.1 Классификация химических элементов…………………………
2.2 Макроэлементы……………………………………………………
2.3 Микроэлементы……………………………………………………
Глава 3. Обмен веществ в организме………………………………………
3.1 Углеводы………………………………………………………….
3.2 Липиды……………………………………………………………..
3.3 Пептиды……………………………………………………………
3.4 Аминокислоты…………………………………………………….
Заключение…………………………………………………………………..
Список литературы………………………………………………………….

Вложенные файлы: 1 файл

курсовая.doc

— 519.50 Кб (Скачать файл)

     Гемоглобин представляет собой сложное химическое соединение (мол. вес. 68 800). Он состоит из белка глобина и четырёх молекул гема. Молекула гема, содержащая атом железа, обладает способностью присоединять и отдавать молекулу кислорода. При этом валентность железа, к которому присоединяется кислород, не изменяется, т. е. железо остаётся двухвалентным.

     Оксигемоглобин несколько отличается по цвету от гемоглобина, поэтому артериальная кровь, содержащая оксигемоглобин, имеет ярко - алый цвет. Притом тем более яркий, чем полнее произошло её насыщение кислородом. Венозная кровь,содержащая большое количество восстановленного гемоглобина, имеет тёмно –вишнёвый цвет.

     Метгемоглобин является окислительным гемоглобином, при образование которого меняется валентность железа: двухвалентное железо, входящее в молекулу гемоглобина, превращается  в трёх валентное. В случае большого накопление в организме метгемоглобина отдача кислорода тканям становится невозможной и наступает смерть от удушения.

     Карбоксигемоглобин представляет собой соединение гемоглобина с угарным газом. Это соединение примерно в 150 – 300 раз прочнее, чем соединение гемоглобина с кислородом. Поэтому примесь даже 0,1% угарного газа во вдыхаемом воздухе ведёт к тому, что 80% гемоглобина оказываются связанными с окисью углерода и не присоединяют кислород, что является опасным для жизни.

     Миоглобин. В скелетной и сердечной мышце находится миоглобин. Он способен

связывать до 14% общего количества кислорода в организме. Это его  свойство играет важную роль в снабжение  кислородом работающих мышц. Если при  сокращение мышцы кровеносные капилляры её сжимаются и кровоток  в некоторых участках мышцы прекращается, в течение некоторого времени сохраняется снабжение мышечных волокон кислородом.

доказательство его  эффективности как транспортного  белка. Больные с генетически обусловленными нарушениями синтеза трансферрина страдают железодефицитной анемией, нарушениями иммунной системы и интоксикацией от избытка железа!

 

Ферритин

      В органах млекопитающих железо в основном запасается в двух формах – ферритине и гемосидерине. Гемосидерин изучен не достаточно хорошо и, возможно, является продуктом распада ферритина.

       Ферритин в настоящее время охарактеризован довольно полно. Это водо-растворимый белок, состоящий из 24 одинаковых субъединиц, которые составляют пустотелую сферическую оболочку. Во внутренней полости находится мицелярное ядро, содержание железа в котором примерно 57%. Мицела может содержать до 4500 атомов железа, если ферритин полностью насыщен железом (что не является обязательным). Белковую оболочку пронизывают шесть каналов, которые служат для приёма и отдачи железа. Приём железа происходит при каталитическом окислении аппоферритином Fe (II) в Fe (III), а высвобождение – при  восстановление Fe (II) восстановленными флавинами. В большинстве клеток синтез ферритина значительно ускоряется в присутствии железа; в клетках печени крыс синтез субъединиц проходит за 2 – 3мин.

 

МЕДЬ

      Недостаток в организме меди приводит к деструкции кровеносных сосудов, патологическому росту костей, дефектам в соединительных тканях. Кроме того, считают, что дефицит меди служит одной из причин раковых заболеваний.

      В некоторых случаях поражение легких раком у людей пожилого возраста врачи связывают с возрастным понижением меди в организме. Многое известно и о транспорте меди в организме.

         Значительная часть меди находится в форме церулоплазмина. Содержание меди в организме варьируется от 100 до 150 мг с наибольшей концентрацией в стволе мозга. Большой расход меди ведёт к дефициту и неблагоприятен для человека. Прогрессирующие заболевание мозга у детей (синдром Менкеса) связано с дефицитом меди, так как при этом заболевание не хватает медьсодержащего фермента. Некоторые улучшения в состоянии этих больных было получено при введение меди.

Избыточное количество меди в организме также неблагоприятно и ведет к развитию тяжелых заболеваний. При болезни Вильсона содержание меди увеличивается практически в 100 раз по сравнению с нормой. Медь обнаруживается во многих тканях, но особенно её много в печени, почках и мозге. Её можно увидеть на роговице в виде коричневых или зелёных кругов. В настоящие время установлено, что первоначально избыточные концентрации меди возникают в печени, затем в нервной системе, проявление расстройства этих органов наступают в том же порядке. Симптомы болезни Вильсона включают цирроз печен, нарушение координации, сильный тремор, прогрессирующие разрушение зубов. Степень выраженности симптомов зависит от количества содержание меди. Уменьшение клинической симптоматики может быть достигнуто использованием хелатирующих агентов, выводящих излишки запасов меди. Сам факт исчезновение симптомов после подобной терапии означает, что разрушение мозга является больше биологическим процессом, нежели структурным. Несмотря на генетически зависимую природу заболевания, отложение меди в тканях наблюдается не всегда. Медь откладывается в определённые медь протеины печени, при болезни Вильсона происходит нарушение в синтезе апоцерулоплазмина таким образом, что медь не может связываться с этими белками и начинает откладываться в других местах.

     Понятно, что это не может служить единственным объяснением, так как у ряда пациентов уровень церулоплазмина понижен незначительно. Кроме того, в больших количествах медь обнаруживается в печени новорождённых, причём 2% общего количества меди связано с белком. Через три месяца концентрация снижается до нормального уровня, с того времени печень способна синтезировать белок цирулоплазмин. Существует другая точка зрения на болезнь Вильсона: структура белка металлотеонина при болезни Вильсона нарушена и это ведёт к повышенному связыванию ионов меди, что в свою очередь ведёт к нарушению запасов и транспорта меди в организме. У пациентов с болезнью Вильсона было продемонстрировано повышенное связывание меди металлотионеином. При лечение болезни Вильсона употребляют пищу, бедную медью, и применяют хелатирующие агенты, особенно пенисилламин. При многих других заболеваниях наблюдается увеличение меди сыворотки: так при инфекционном гепатите наблюдается увеличение сыворотки меди в 3 раза по сравнению с нормой – 350мкг/100мл. это связано с накоплением церулоплазмина. Повышение меди в крови встречается при таких заболеваниях, как лейкемия, лимфома, ревматоидный артрит, цирроз, нефрит[7].

       Высокий уровень меди может быть связан  с различными явлениями, и обнаружение высоких концентраций меди сыворотки представляет диагностическую ценность только при одновременном рассмотрение с данными других исследований.

      Анализ концентрации ионов меди необходимо проводить для оценки эффективности лечения, так как уровень меди прямо пропорционален тяжести заболевания. Это положение верно при гепатитах и злокачественных заболеваниях.

 

ЦИНК

        Большое значение для организма человека имеет цинк, в среднем в организме находится около 3г, а суточное потребление 15мг. Дефицит цинка у человека выражается в потере аппетита, нарушении в скелете и оволосении, повреждении кожи, замедлении полового созревания.

       В  нескольких случаях дефицит цинка  привёл у людей к большим  нарушениям в сенсорном аппарате, выражавшимся в извращение: вкуса и запаха. У этих пациентов симптомы анорексии и нарушение физиологических отравлений могут быть сняты добавками цинка в рацион. Важную роль цинк играет в заживлении ран. При дефиците цинка этот процесс идёт медленно в следствии снижения синтеза белка и коллагена. Из этого следует, что для улучшения заживления ран в рацион больным с дефицитом элемента следует добавлять цинк[7].                                

 

Неметаллы как микроэлементы.

 

      Мы уделили  большое внимание роли металлов. Однако необходимо учитывать, что некоторые неметаллы также являются совершенно необходимыми для функционирования организма.

КРЕМНИЙ

      Кремний является также необходимым микроэлементом. Это было подтверждено тщательным изучением питания крыс с использованием различных диет.

        Крысы заметно прибавили в весе при добавлении метасиликата натрия (Na2 (SiO)3 . 9H2O) в их рацион (50мг на 100г). цыплятам и крысам кремний нужен для роста и развитие скелета. Недостаток кремния приводит к нарушению структуры костей и соединительной ткани. Как выяснилось кремний присутствует в тех участках кости, где происходит активная кальцинация, например в кости образующих клетках, остеобластах. С возрастом концентрация кремния в клетках падает. О том, в каких процессах участвует кремний в живых системах, известно мало. Там он находится в виде кремневой кислоты и, наверное, участвует в реакциях сшивки углеродов. У человека богатейшим источником кремния оказалась гиалуроновая кислота пуповины. Она содержит 1,53мг свободного и 0,36мг связанного кремния на один грамм[7].

 

СЕЛЕН

      Недостаток селена вызывает гибель клеток мышц и приводит к мускульной, в частности сердечной, недостаточности. Биохимическое изучение этих состояний привело к открытию фермента глутатионпероксидазе, разрушающей пероксиды. Недостаток селена ведет к уменьшению концентрации этого фермента, что в свою очередь вызывает окисление липидов. Способность селена предохранять от отравления ртутью хорошо известна.

      Гораздо менее известен тот факт, что существует корреляция между высоким содержанием селена в рационе и низкой смертностью от рака. Селен входит в рацион человека в количестве 55 – 110мг в год, а концентрация селена в крови составляет 0,09 – 0,29мкг/см.

       При приёме внутрь селен концентрируется в печени и почках. Ещё один пример защитного действия селена от интоксикации лёгкими металлами является его способность предохранять от отравления соединениями кадмия. Оказалось, что как и в случае с ртутью, селен вынуждает эти токсические ионы связываться с ионными активными центрами, с теми, на которое их токсическое действие не влияет[7].        

 

МЫШЬЯК

      Несмотря  на хорошо известные токсические  действия мышьяка и его соединений, имеются достоверные данные согласно которым недостаток мышьяка приводит к понижению рождаемости и угнетению роста, а добавление в пищу арсенита натрия привело к увеличению скорости роста у человека[7].        

  

ХЛОР и БРОМ

      Анионы  галогенов отличаются от всех  тем, что они представляют собой простые, а не оксо – анионы. Хлор распространён чрезвычайно широко, он способен проходить сквозь мембрану и играет важную роль в поддержание осмотического равновесия. Хлор присутствует в виде соляной кислоты в желудочном соке[1].

     Концентрация соляной кислоты в желудочном соке человека равна 0,4-0,5%.По поводу роли брома как микроэлемента существуют некоторые сомнения, хотя достоверно известно его седативное действие.

 

 

ФТОР

      Для  нормального роста фтор совершенно  необходим, и его недостаток  приводит к анемии. Большое внимание было уделено метаболизму фтора в связи с проблемой кариеса зубов, так как фтор предохраняет зубы от кариеса. Кариес зубов изучен достаточно подробно. Он начинается с образования на поверхности зуба пятна. Кислоты, вырабатываемые бактериями, растворяют под пятном зубную эмаль, но, как ни странно, не с её поверхности. Часто верхняя поверхность остаётся неповреждённой до тех пор, пока участки под ней не окажутся полностью разрушенными. Предполагается, что на этой стадии фторид – ион может облегчать образования аппатита. Таким образом совершается реминелизация начавшегося повреждения. Фтор используют для предотвращения разрушений зубной эмали. Можно вводить фториды в зубную пасту или же непосредственно обрабатывать ими зубы. Концентрация фтора, необходимая для предотвращения кариеса, составляет в питьевой воде около 1мг/л, но уровень потребления зависит не только от этого. Применение высоких концентраций фторидов (более8мг/л) может неблагоприятным образом повлиять на тонкие равновесные процессы образования костной ткани. Чрезмерное поглощение фторидов приводит к фторозу. Фтороз приводит к нарушениям в работе щитовидной железы, угнетению роста и поражению почек. Длительное воздействие фтора на организм прводит к минерализации тела. В итоге деформируются кости, которые даже могут срастись, и происходит кальцификация связок[7].

ЙОД

       Основной  физиологической роль йода является  участие в метаболизме щитовидной  железы и присущих ей гормонах. Способность щитовидной железы  аккумулировать йод присуща также слюнным и молочным железам[2].

      А также некоторым другим органам. В настоящее время, однако, считают, что ведущую роль йод играет только в жизни деятельности щитовидной железы.

      Недостаток йода приводит к возникновению характерных симптомов: слабости, пожелтению кожи, ощущение холода и сухости. Лечение тиреоидными гормонами или йодом устраняет эти симптомы. Недостаток тереоидных гормонов может привести к увеличению щитовидной железы[2].

      В редких случаях (отягощение в организме различных соединений, мешающих поглощению йода, например тиоцианата или антитиреоидного агента – гоитрина, имеющегося в различных видах капусты) образуется зоб. Недостаток йода особенно сильно отражается на здоровье детей – они отстают в физическом и умственном развитии. Йод дефицитная диета во время беремености приводит к рождению гипотироидных детей (кретинов). Избыток гормонов щитовидной железы приводит к истощению, нервозности, тремору, потере веса и повышенной потливости. Это связано с увеличением пероксидазной активности и вследствие этого с увеличением йодирования тиреоглобулинов. Избыток гормонов может быть следствием опухоли щитовидной железы. При лечение используют радиоактивные изотопы йода, легко

усваивающиеся клетками щитовидной железы[2].

 

 

 

                                         Глава 3. Обмен веществ в организме

 

       Живой организм и его функционирование находятся в постоянной зависимости от окружающей среды. Интенсивность обмена с внешней средой и скорость внутриклеточных процессов обмена веществ поддерживают постоянство внутренней среды и целостность организма[5].

                                           

                                                           3.1 Углеводы

       Углеводы (сахара) – группа природных полигидроксиальдегидов и полигидроксикетонов с общей формулой (CH2O)n . Группа включает простые сахара (моносахаридов) и их высокомолекулярные аналоги, олигосахариды и полисахариды.

        А. Биологические функции углеводов.

        Полисахариды, прежде всего крахмал и некоторые дисахариды, являются важными (хотя и не жизненно необходимыми) компонентами питания. В кишечнике они расщепляются до моносахаридов, которые затем всасываются слизистой кишечника[5].      

Информация о работе Химия в организме человека