Физико-химические методы анализа

Автор работы: Пользователь скрыл имя, 17 Февраля 2013 в 12:33, курсовая работа

Краткое описание

Целью данной работы является изучение физико-химических методов мониторинга окружающей среды. Физико-химические методы мониторинга окружающей среды – методы контроля химических веществ, загрязняющих окружающую среду. Они используются для определения состава загрязняющих веществ, их количества в окружающей среде. Различают колориметрические, потенциометрические, люминесцентные методы анализа веществ.

Вложенные файлы: 1 файл

Физико-химические методы исследования.doc

— 161.50 Кб (Скачать файл)

Неполярные  фазы для газоадсорбционной хроматографии силикагель, оксид алюминия, цеолиты, полимерные сорбенты (например, полисорб, поропак и др.).

Наиболее употребляемые неподвижные жидкие фазы для жидкостной хроматографии карбовакс, силиконовые элястомеры, твердый носитель-хроматов и др.

Подвижные фазы азот, гелий, аргон, пары воды.

 

 

 

 

 

 

 

 

 

 

 

5.1.1 Детекторы

История развития газовой хроматографии – это  история появления и развития детекторов для хроматографии. Применяются  несколько типов детекторов.

1) детектор теплопроводности (ДТП) или катарометр. Принцип его действия основан на различии теплопроводностей анализируемого вещества и газа-носителя;

2) в детекторе ионизационно-пламенном (ПИД или ДИП.) используется зависимость электропроводности пространства между электродами от числа находящихся в нем ионизированных частиц, которые образуются в водородном пламени под действием термических и окислительных процессов при попадании в него молекул анализируемого вещества. Выходным сигналом детектора является значение силы тока, протекающего между электродами под действием приложенного к ним напряжения;

3) электронно-захватный детектор (ЭЗД), или детектор по захвату электронов, как и ДИП, основан на зависимости электропроводности промежутка между электродами и числом ионов, находящихся в этом промежутке, которое связано с числом молекул, поступающих в детектор. Однако механизм и способ образования ионов принципиально отличаются от такового в случае ДИП – ионы образуются в результате взаимодействия молекул анализируемого вещества и потока электронов в камере детектора в результате бета-распада радиоактивного вещества.

Необходим очень чистый газ-носитель, например азот «ОСЧ», не содержащий следов кислорода, который снижал бы чувствительность детектора ЭЗД. Чувствительность определения зависит от наличия галоид -, нитро - и других групп, взаимодействующих с электронами;

4) детектор термоионный (ДТИ) по принципу действия аналогичен ДИП. Однако дополнительно в водородное пламя непрерывно поступает поток ионов щелочных металлов (калий, натрий, цезий). В их присутствии резко возрастает эффективность ионизации соединений, содержащих азот, фосфор, хлор и др. ДТИ применяют для определения ФОС и азотсодержащих соединений;

5) пламенно-фотометрический детектор (ПФД) селективен и обладает чувствительностью по отношению к соединениям, содержащим серу.

Качественный анализ состоит  в сравнении периодов времени  удерживания данного вещества на хроматограмме от момента ввода  пробы в испаритель до момента, соответствующего максимальному значению сигнала для данного компонента.

Количественный анализ основан  на прямо пропорциональной зависимости  содержания вещества в пробе от площади пика данного компонента на хроматограмме. Расчет ведется в основном тремя методами.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.2. Методы количественного анализа

1. Метод абсолютной калибровки заключается в построении графиков зависимости высоты или площади пика X от содержания компонентов в смеси. Расчет ведется по следующим формулам:

X = 1000a/V

X = cV/V20,

где а – содержание вещества, определенное по графику, мг; V – объем пробы воздуха, вводимого в испаритель хроматографа, мл; с – концентрация вещества, рассчитанная по графику, мг/мл; V20 – объем пробы воздуха, произведенный в стандартных условиях.

2. Метод внутреннего стандарта основан на введении в анализируемую смесь известного количества вещества, принимаемого за стандарт. По своим свойствам оно должно быть достаточно близко к анализируемым соединениям, но полностью отличаться от них по хроматограмме.

3. Метод норматизации площадей пиков. При этом сумму площадей всех пиков с учетом поправочных коэффициентов принимают за 100%. Для вычисления концентрации вещества (в объемных процентах) необходимо его площадь умножить на 100 и разделить на сумму всех площадей. Метод прост, но может быть использован лишь тогда, когда все компоненты известны и полностью разделены.

 

 

 

 

 

 

 

 

5.2. Высокоэффективная жидкостная хроматография (ВЭЖХ)

Высокоэффективная жидкостная хроматография (ВЭЖХ) – хроматографический метод, позволяющий разделить высококипящие жидкости и (или) твердые вещества, которые затруднительно либо нецелесообразно определять методом газожидкостной хроматографии, например полициклические ароматические углеводороды, аминокислоты, ПАВ, пестициды, лекарственные препараты, углеводы и др.

Основой хроматографического  разделения является участие компонентов  разделяемой смеси в сложной  системе Ван-дер-Ваальсовых взаимодействий (преимущественно межмолекулярных) на границе раздела фаз. Как способ анализа, ВЭЖХ входит в состав группы методов, которая, ввиду сложности исследуемых объектов, включает предварительное разделение исходной сложной смеси на относительно простые. Полученные простые смеси анализируются затем обычными физико-химическими методами или специальными методами, созданными для хроматографии.

Принцип жидкостной хроматографии состоит в разделении компонентов смеси, основанном на различии в равновесном распределении их между двумя несмешивающимися фазами, одна из которых неподвижна, а другая подвижна.

Отличительной особенностью ВЭЖХ является использование высокого давления (до 400 бар) и мелкозернистых сорбентов (обычно 3-5 мкм, сейчас до 1.8 мкм). Это позволяет разделять сложные смеси веществ быстро и полно (среднее время анализа от 3 до 30 минут).

Метод ВЭЖХ находит широкое  применение в таких областях, как химия, нефтехимия, биология, биотехнология, медицина, пищевая промышленность, охрана окружающей среды, производство лекарственных препаратов и во многих других.

По механизму разделения анализируемых или разделяемых  веществ ВЭЖХ делится на адсорбционную, распределительную, ионообменную, эксклюзионную, лигандообменную и другие.

Следует иметь  в виду, что в практической работе разделение часто протекает не по одному, а по нескольким механизмам одновременно. Так эксклюзионное разделение бывает осложнено адсорбционными эффектами, адсорбционное — распределительными, и наоборот. При этом чем больше различие веществ в пробе по степени ионизации, основности или кислотности, по молекулярной массе, поляризуемости и другим параметрам, тем больше вероятность проявления другого механизма разделения для таких веществ.

На практике, наибольшее распространение получила «обращённо-фазовая» (распределительная) хроматография, в которой неподвижная  фаза не полярна, а подвижная полярна (т. е. обратна «прямофазной» хроматографии).

Хроматограф состоит  из:

-колонок из  нержавеющей стали, толстостенного  стекла, тантала или меди; диаметр  – 1-6 мм, длина – от 10-15 см до 7 м;

-пористых носителей:  силикагель, хромосорб, биосил и  др. с удельной площадью более  50 м/г и диаметр частиц 0,005-0,05 мм;

-детекторов: рефрактометрической  с чувствительностью 10 г/мл, УФ-детектор  с чувствительностью 10 и флуориметрический с чувствительностью 10 г/мл, а также электрохимический;

- подвижной фазы: ацетонитрил, метанол и др.

 

 

 

 

 

 

 

 

 

 

5.3. Тонкослойная хроматография (ТСХ)

Тонкослойная хроматография (ТСХ) - это вариант хроматографии, основанный на различии в скорости перемещения компонентов смеси в плоском тонком слое (толщина 0,1-0,5 мм) сорбента при их движении в потоке подвижной фазы (элюента). Последняя представляет собой, как правило, жидкость, однако осуществлен и газовый вариант ТСХ. В качестве сорбентов используют мелкозернистые силикагель, Аl2О3, целлюлозу, крахмал, полиамид, иониты и др. Суспензиями этих сорбентов покрывают пластинки из стекла, фольги или пластика; для закрепления слоя применяют крахмал, гипс или другие связующие. Выпускаются готовые пластинки с уже закрепленным слоем сорбента. Элюентами служат обычно смеси органических растворителей, водных растворов кислот, солей, комплексообразующих и других веществ. В зависимости от выбора хроматографической системы (состава подвижной и неподвижной фаз) в разделении веществ основную роль могут играть процессы адсорбции, экстракции, ионного обмена, комплексообразования. На практике часто реализуются одновременно нескольких механизмов разделения.

В зависимости от положения пластинки и направления потока элюента различают восходящую, нисходящую и горизонтальную ТСХ. По технике работы выделяют фронтальный анализ (когда подвижной фазой служит анализируемая смесь) и обычно используемый элюционный вариант. Применяют также "круговую" (когда анализируемый раствор и растворитель последовательно подаются в центр пластинки) и "антикруговую" ТСХ (когда анализируемый раствор наносится по окружности и элюент перемещается от периферии к центру пластинки), ТСХ под давлением (когда растворитель под давлением пропускают через слой сорбента, покрытый плотно прижатой полиэтиленовой пленкой), а также ТСХ в условиях градиента, состава сорбента и т. п. В так называемой двухмерной ТСХ хроматографический процесс осуществляют последовательно в двух взаимно перпендикулярных направлениях с различными элюентами, что увеличивает эффективность разделения. С этой же целью применяют многократное элюирование в одном направлении.

В элюционном варианте на слой сорбента наносят капли (объемом 1-5 мкл) анализируемого раствора и погружают край пластинки в элюент, который находится на дне герметично закрываемой стеклянной камеры. Элюент продвигается по слою сорбента под действием капиллярных и гравитационных сил; анализируемая смесь перемещается в том же направлении. В результате многократного повторения актов сорбции и десорбции в соответствии с коэффициент распределения в выбранной системе компоненты разделяются и располагаются на пластинке отдельными зонами.

После завершения процесса пластинку вынимают из камеры, высушивают и обнаруживают разделенные зоны по собств. окраске или после опрыскивания их растворами реагентов, образующих окрашенные или флуоресцирующие пятна с компонентами разделяемой смеси. Радиоактивные вещества обнаруживают авторадиографически (экспонированием на рентгеновскую пленку, наложенную на хроматографии, пластинку). Применяют также биологические  и ферментативные методы детектирования. Полученная картина распределения хроматографических зон называется хроматограммой .

Хроматограмма, полученная при разделении смеси трех компонентов  методом тонкослойной хроматографии.

Положение хроматографич. зон на хроматограмме характеризует  величина Rf-отношение пути li, пройденного центром зоны i-го компонента от линии старта, к пути l, пройденному элюентом: Rf = li/l; Rf 1. Величина Rf зависит от коэффициент распределения (адсорбции) и от соотношения объемов подвижной и неподвижной фаз.

На разделение в ТСХ влияет ряд факторов, состав и свойства элюента, природа, дисперсность и пористость сорбента, температура, влажность, размеры и толщина слоя сорбента, размеры камеры. Поэтому для получения воспроизводимых результатов необходимо тщательно стандартизовать условия опыта. Соблюдение этого требования позволяет устанавливать Rf  с относительно стандартным отклонением 0,03. В стандартных условиях Rf постоянна для данного веществава и используется для идентификации последнего.

Кол-во компонента в хроматографической зоне определяют непосредственно на слое сорбента по площади зоны (обычно ее диаметр варьирует от 3 до 10 мм) или интенсивности ее окраски (флуоресценции). Используют также автоматически сканирующие приборы, измеряющие поглощение, пропускание или отражение света, либо радиоактивность хроматографических зон. Разделенные зоны можно соскоблить с пластинки вместе со слоем сорбента, экстрагировать компонент в растворитель и анализировать раствор подходящим методом (спектрофотометрия, люминесцентный, атомно-абсорбционный, атомно-флуоресцентный, радиометрический анализ, масс-спектрометрия и т.д.). Погрешность количественного определения обычно составляет 5-10%; пределы обнаружения веществ в зонах -10-3-10-2 мкг (по окрашенным производным) и 10-10-10-9 мкг (с применением люминесцентного анализа).

Достоинства ТСХ: простота, экономичность, доступность оборудования, экспрессность (продолжительность  разделения 10-100 мин), высокие производительность и эффективность разделения, наглядность результатов разделения, простота обнаружения хроматографических зон.

ТСХ применяют для разделения и анализа как органических, так и неорганических веществ: практически всех неорганических катионов и многих анионов, в т. ч. близких по свойствам ионов благородных металлов, РЗЭ, а также полимеров, пестицидов, аминокислот, липидов, алкалоидов и т. д. С помощью ТСХ удобно анализировать микрообъекты (малые кол-ва веществ), оценивать чистоту препаратов, контролировать технологические процессы и состав сточных вод, изучать поведение различных ионных форм элементов, предварительно подбирать условия для колоночной хроматографии.

 

 

 

 

 

 

 

 

 

 

5.4. Ионная хроматография

Объединяет принцип ионообменной хроматографии, включающей последовательное использование двух колонок, с кондуктометрическим детектированием. В основе этого метода – элюентное ионообменное разделение ионов на первой (разделяющей) колонке с последующим подавлением фонового сигнала элюента на второй (подавляющей) ионообменной колонке. Ионообменные колонки заполняют неподвижными фазами, содержащими в своей структуре ионогенные группы, способные к реакции обмена и обладающие высокой проникающей способностью. При анализе катионов колонку для разделения заполняют сульфированными катионитами низкой емкости. В качестве элюентов используют растворы HCL1 HNO3, гидрохлорида пиридина и др. В качестве подвижной фазы – растворы карбоната и гидрокарбоната натрия.

В последние годы развивается ионная хроматография без подавления фонового сигнала элемента и с различными способами детектирования: фотометрический, атомноадсорбционный, ионометрический (ионселективные электроды).

Информация о работе Физико-химические методы анализа