Протонная теория кислот и оснований Ренстеда

Автор работы: Пользователь скрыл имя, 12 Марта 2014 в 16:23, реферат

Краткое описание

В работе дается краткое описание теории кислот и оснований Бренстеда, а также рассказывается о влиянии строения нуклеофильного реагента на механизм реакций нуклеофильного замещения при насыщенном атоме углерода, в том числе влияние алкильной группы в исходной молекуле, влияние замещаемой группы, влияние нуклеофильного реагента, конкуренция нуклеофилов при замещении.

Вложенные файлы: 1 файл

РЕФЕРАТ по матеральному балансу.docx

— 287.77 Кб (Скачать файл)

1. ПРОТОННАЯ ТЕОРИЯ КИСЛОТ И ОСНОВАНИЙ РЕНСТЕДА

 

Основания Бренстеда – это соединения, способные присоединять протон (акцепторы протона). Для взаимодействия с протоном основание должно иметь свободную пару электронов или электроны p-связи.

Кислоты и основания образуют сопряженные кислотно-основные пары, например:

   CH3COOH  + H2O         CH3COO-     +     H3O+

кислота1     основание2       основание1     кислота2

 

  CH3NH2 + H2O      CH3NH3+ + OH-

основание1    кислота2        кислота1    основание2

 

В общем виде:

  Н-А  + :В    :А           +     Н-В

кислота1   основание2     основание1          кислота2

 

Сила кислоты НА будет зависеть от силы основания :В. Поэтому для создания единой шкалы силу кислот и оснований Бренстеда определяют относительно воды, которая является амфотерным соединением и может проявлять и кислотные, и основные свойства.

Сила кислот определяется константой равновесия их взаимодействия с водой как основанием, например:

CH3COOH + H2O = CH3COO- + H3O+

 

Так как в разбавленных растворах [H2O]=const, то ее можно внести в константу равновесия, которую называют константой кислотности:

На практике чаще пользуются величинами pKa= - lg Ka. Чем меньше величина pKa, тем сильнее кислота.

Сила оснований определяется константой равновесия взаимодействия их с водой как кислотой:

RNH2 + H2O = RNH3+ + OH-

         -  константа основности.

Для сопряженных кислоты и основания Ka  Kb=KW. Таким образом, в сопряженной кислотно-основной паре, чем сильнее кислота, тем слабее основание и наоборот. Силу основания чаще выражают не константой основности, а константой кислотности сопряженной кислоты . Например, для основания RNH2 величина - это константа кислотности сопряженной кислоты :

RNH3+ + H2O = RNH2 + H3О+

На практике чаще пользуются величиной . Чем больше величина , тем сильнее основание.

 

 

 

 

 

 

2. ВЛИЯНИЕ СТРОЕНИЯ НУКЛЕОФИЛЬНОГО РЕАГЕНТА НА МЕХАНИЗМ РЕАКЦИЙ НУКЛЕОФИЛЬНОГО ЗАМЕЩЕНИЯ ПРИ НАСЫЩЕННОМ АТОМЕ УГЛЕРОДА

2. 1. Влияние алкильной группы в исходной молекуле

В переходном состоянии «чистой» SN 2 реакции углеродный атом, как мы видели несет частичный отрицательный заряд и стабилизируется поэтом электроноакцепторными заместителями, которые способствую рассредоточению этого заряда, уменьшают энергию активированного комплекса и ускоряют реакцию. Наличие объемистых заместителей, наоборот, затрудняет подход нуклеофила и вызывает стерические эффекты, замедляющие реакцию.

В реакции SN1 определяющей стадией является образована карбкатиона. По предложению Хэммонда принято считать, что активированный комплекс и образующаяся при его распаде энергетическая нестабильная частица близки по строению и энергетическому состоянию. Отсюда следует, что все факторы, стабилизирующие карбкатион, будут уменьшать и энергию активированного комплекса, ускоряя реакцию SN1. К этим факторам относятся: наличие электронодонорных заместителей, эффекты их сопряжения и сверхсопряжения с реакционным центром. Стерические препятствия при подходе реагента уже не играют роли, а присутствие объемистых заместителей даже ускоряет реакцию SN1 из-за ослабления связи С‒X.

Таким образом, ни один из рассмотренных эффектов заместителей не действует одинаково на реакции SN 1 и SN 2. Например, накопление метальных групп у реакционного центра в ряду алкилгалогенидов облегчает образование карбкатиона и ускоряет реакцию SN1 из-за сверхсопряжения метильных групп с реакционным центром и их стерического и индуктивного эффекта:

Скорость реакции SN2, наоборот, возрастает с уменьшением числа метильных групп из-за уменьшения стерических препятствий и снижения положительного индуктивного влияния заместителей. В результате первичные алкилгалогениды реагируют по SN 2 механизму, а третичные - по SN1.

Рис. 11.6. Влияние электронодонорного эффекта заместителей на

скорость реакции нуклеофильного замещения

 

 

Между этими предельными случаями находится область пограничных механизмов, когда из-за изменения заряда на реакционном центре влияние заместителей становится обратным и сходным с реакцией SN1. По этой причине в зависимости от донорноакцепторных свойств заместителей, связанных с реакционным центром, наблюдается понижение или повышение скорости с прохождением ее через минимум (рис. 11.6). Так, скорости алкоголиза СН3Вг, С2Н5Вr, изо-С3Н7Вr и тpeт-C4H9Br этанолом относятся как 1:0,40:0,68:2900. Очевидно, что структурные влияния являются еще одним способом установления механизма нуклеофильного замещения.

Аллилгалогениды СН2=СНСН2Х и бензилгалогениды С6Н5СН2Х реагируют по пограничному механизму со скоростью более высокой, чем у первичных алкилгалогенидов. Аллил- и бензилгалогениды иногда показывают повышенную склонность к взаимодействию по SN l-реакции, что обусловлено стабилизацией их карбкатиона за счет сопряжения:

Кислородные заместители в алкильной группе имеют разное влияние.

Например, α-хлорэфиры ввиду возможности сопряжения с реакционным центром реагируют очень быстро по SN1-механизму/

Наоборот, в β-хлорэфирах сопряжение невозможно, и их реакционная способность меньше, чем у незамещенного хлорпроизводного.

На скорость реакций иногда сильно влияет непосредственное взаимодействие одного из атомов заместителя с относительно далеко расположенным от него реакционным центром. При нуклеофильном замещении в галогенкарбоновых кислотах этот эффект соседних групп проявляется очень ярко. Их сольволиз в кислых средах ускоряется, когда галоген и карбоксильная группа расположены таким образом, что образуется внутримолекулярная водородная связь с замещаемой группой, например в α-галогенкарбоновых кислотах:

В щелочной среде, когда кислота превращается в соль, такое электрофильное активирование реакции невозможно, но зато появляется эффект сопряжения, который способствует расщеплению С-Х-связи с внутримолекулярной fтакой реакционного центра и образованием нестабильного лактона, быстро переходящего в продукт реакции:

 

2.2. Влияние замещаемой группы

При прочих равных условиях нуклеофильное замещение как по SN1, так и по SN2 механизму должно протекать тем быстрее, чем ниже энергия гетеролитического разрыва связи С‒X. Это во многом связано со стабилизацией образующегося аниона за счет его лучшей поляризуемости (в случае галоген‒анионов) или эффектов сопряжения (для эфиров сульфокислот и диалкилсульфатов):

Кислые эфиры серной кислоты обладают лишь слабой алкилирующей способностью, так как у них легче разрывается связь S‒О. Спирты и простые эфиры, как мы видели выше, реагируют только при кислотном катализе, когда поляризуется связь С-О:

При прочих равных условиях, чем больше эта способность, тем выше роль пограничных или SN1 механизмов в реакциях нуклеофильного замещения.

 

2.3. Влияние нуклеофильного реагента

Факторы, влияющие на скорость реакций нуклеофильного замещения и связанные со строением нуклеофильного реагента, объединяют понятием нуклеофильность. К этим факторам относятся основность и поляризуемость нуклеофила.

Связь нуклеофильности с основностью обусловлена аналогией протолитических реакций и реакций нуклеофильного замещения: в протолитической реакции основание за счет своей свободной электронной пары присоединяет протон; в реакции нуклеофильного замещения этой же электронной парой осуществляется атака на углеродный атом, имеющий дефицит электронов. В тех случаях, когда другие факторы, влияющие на нуклеофильность, остаются неизменными, наблюдается корреляция между константой скорости реакции SN 2-замещения (нуклеофильностью) и константой основности нуклеофильного реагента (основностью). Количественно эта зависимость выражается уравнением Бренстеда, которое является частным случаем линейного соотношения свободных энергий:

где k — константа скорости, Кb — константа основности нуклеофила, G и β — эмпирические константы.

Чем больше β, тем быстрее возрастает скорость с увеличением основности нуклеофила, что характерно для типичных SN 2 реакций, в которых нуклеофил Y в большой степени связывается с углеродным атомом уже в переходном состоянии (Y--C--X). По мере перехода от SN2 к SN1 механизму завязывание новой связи происходит на все большем расстоянии (Y----С----X), и величина β уменьшается.

На рис. 11.7 эта зависимость показана, для изменения относительных скоростей алкоголиза (k1/k0) некоторых хлоридов в зависимости oт относительной основности алкоголятов (Кb,i/Kb,0).

Рис. 11.7. Зависимость относительной реакционной

способности алкоголятов от их основности для ре-

акций с органическими хлоридами:

1 – с н-бутилхлоридом;

2 – с аллилхлоридом;

3 – с трет-бутилхлоридом

Трет-бутилхлорид реагирует по SN1 механизму, и относительная реакционная способность алкоголятов в этой реакции (кривая 3) не зависит от их основности (β≈ 0).

Кроме основности на нуклеофильность сильно влияет поляризуемость реакционного центра нуклеофила. В объемистых ионах (S–,I–, Вr–) или при наличии в анионе кратных связей (N3–, CN–) электроны легко смещаются в направлении положительно заряженного атома углерода в атакуемой молекуле. Поляризованная молекула нуклеофила завязывает с ним связь на большем расстоянии и реагирует значительно быстрее нуклеофилов той же или даже большей основности, но неспособных к поляризации. Например, усредненная относительная нуклеофильность легко поляризуемых ионов C6HSS– в 470 раз выше, чем для ионов С2Н5О–, тогда как основность иона С2Н5О– (рКb = –2) на много порядков больше, чем для иона C6H5S– (рКb = 4,6). Высокой нуклеофильностью обладают также ионы HS– и CN–, молекулы аммиака и аминов. В результате условия синтеза меркаптанов, сульфидов, аминов, нитрилов нередко оказываются даже более мягкими, чем условия гидролиза алкилхлоридов щелочами.

Эдварде предложил следующее уравнение для количественной оценки нуклеофильности EN:

где R ‒ рефракция (поляризуемость), а рКа ‒ кислотность кислоты, сопряженной нуклеофилу.

Стандартом служит вода, для которой нуклеофильность принята равной нулю. Значения EN для некоторых нуклеофилов приведены в табл. 11.2.

Для аминов нуклеофильность изменяется в ряду:

                                               R2NH ≈ RNH2 >> NH3.

При прочих равных условиях чем сильнее нуклеофильность реагента, тем более вероятно протекание реакции по SN2 механизму. Наоборот, со слабыми нуклеофилами более быстрой может оказаться реакция SN1, и тогда процесс пойдет по этому пути. Такая зависимость с обращением механизмов действительно наблюдается, причем в области SN1 механизма скорость реакции не зависит от природы нуклеофила (рис. 11.8).

Ассоциация отрицательно заряженного нуклеофила с катионом с образованием ионной пары уменьшает реакционную способность нуклеофила, как и электрофильная сольватация за счет водородных связей.

В средах с низкой диэлектрической проницаемостью (ε< 40) заряженные нуклеофилы находятся в основном в виде ионных пар. Особенно прочные ионные пары образуются ионами небольшого размера, поэтому увеличение размеров катиона всегда способствует росту нуклеофильности аниона (нуклеофильная реакционная способность LiCl обычно в 10-1000 раз меньше, чем для хлоридов тетраалкиламмония R4N+ Cl–). Диссоциация ионных пар облегчается также в результате специфической сольватации катионов, например,

Такая сольватация оказывает влияние, аналогичное увеличению размеров катиона, и сильно ускоряет нуклеофильную реакцию с участием этой ионной пары.

Анализ кинетических данных по влиянию природы нуклеофила и замещаемой группы на скорость реакций нуклеофильного замещения показывает, что некоторые легко поляризуемые нуклеофилы (например, I– и Вr–) являются в то же время легко замещаемыми группами. Это позволяет использовать их в качестве нуклеофильных катализаторов. Например, анион йода сильно ускоряет относительно медленные реакции гидролиза алкилхлоридов водой. Механизм нуклеофильного катализа в данной реакции состоит в предварительном замещении хлор‒аниона йодом и в последующем гидролизе образовавшегося алкилиодида образованием спирта и регенерацией йод‒аниона:

2.4. Конкуренция нуклеофилов при замещении

При проведении реакций нуклеофильного замещения в реакционных смесях обычно присутствуют несколько нуклеофилов, что обусловливает образование побочных веществ. Кроме того, некоторые нуклеофилы обладают двумя реакционными центрами и дают разные продукты замещения. При SN 2 реакции органическое вещество преимущественно реагирует, как мы видели выше, с реагентом, имеющим наибольшую нуклеофильность, зависящую от поляризуемости. В отличие от этого, при SN l замещении карбкатион ввиду его высокой реакционной способности имеет меньшую избирательность, но все же предпочтительно взаимодействует с нуклеофилом, имеющим наибольшую электронную плотность (или электроотрицательность). Это правило Корнблюма имеет большое значение для предсказания необходимых условий реакции.

Если взять для примера реакции с нуклеофилами, обладающими двойственной реакционной способностью (C=N, О‒N‒О и др.), то они дают обычно смесь продуктов замещения (нитрилы и изонитрилы, нитросоединения и нитриты) в зависимости от электроотрицательности и поляризуемости атомов:

Сходный случай наблюдается при обмене галогенов. Реакция SN2 всегда протекает в сторону замещения более электроотрицательного атома на более нуклеофильный (F и С1 на Вг и I). Однако при SN l замещении образуется продукт с более электроотрицательным заместителем (т. е. RF из RC1). Для изменения механизма используют соли или катализаторы с сильно электрофильным катионом (AgF, HgF2, SbF3, SbF5):

 

 

 

 

 

 

 

 

 

СПИСОК ЛИТЕРАТУРЫ

 

1. Курс лекций для студентов 3 курса специальности « Химическая технология органических веществ» : «Теория химико-технологических процессов органического синтеза». / Составитель: к. т. н. Мухортова Л. И.

2. Гетерогенный  катализ; Физико-химические основы / И. И. Иоффе, В. А. Решетов, А. М. Добротворский. – Л.: Химия, 1985. – 224 с.

Информация о работе Протонная теория кислот и оснований Ренстеда