Периодический закон и периодическая система Д.И.Менделеева

Автор работы: Пользователь скрыл имя, 05 Ноября 2013 в 20:58, творческая работа

Краткое описание

Дмитрий Иванович Менделеев — русский учёный-энциклопедист: химик, физикохимик, физик, метролог, экономист, технолог, геолог, метеоролог, педагог, воздухоплаватель, приборостроитель. Профессор Санкт-Петербургского университета; член-корреспондент по разряду «физический» Императорской Санкт-Петербургской Академии наук. Среди наиболее известных открытий — периодический закон химических элементов, один из фундаментальных законов мироздания, неотъемлемый для всего естествознания.

Вложенные файлы: 1 файл

п.з менделеева.ppt

— 2.57 Мб (Скачать файл)

Периодический закон и периодическая система Д.И.Менделеева.

 

 

  • Дмитрий Иванович Менделеев  — русский учёный-энциклопедист: химик, физикохимик, физик, метролог, экономист, технолог, геолог, метеоролог, педагог, воздухоплаватель, приборостроитель. Профессор Санкт-Петербургского университета; член-корреспондент по разряду «физический» Императорской Санкт-Петербургской Академии наук. Среди наиболее известных открытий — периодический закон химических элементов, один из фундаментальных законов мироздания, неотъемлемый для всего естествознания.
  • В 1869 году гениальным русским ученным Д.И. Менделеевым был открыт периодический закон, это создало новую эпоху в химии, определив пути ее развития на много десятков лет вперед.
  • Свойства простых тел, а также формы и свойства соединений элементов находяться в периодической зависимости от величины атомных весов элементов
  • Последующее развитие науки позволило, опираясь на периодический закон, гораздо глубже познать строение вещества, чем это было возможно при жизни Менделеева. 
    Блестящее подтверждение нашли пророческие слова Менделеева:"Периодическому закону не грозит разрушение, а обещаются только надстройка и развитие".
  • При изучении свойств химических элементов Д.И. Менделеев уделял особое внимание характеру изменения этих свойств у элементов аналогов и сходных соединений, которые вели к количественной оценке изучаемых явлений.
  • К таким свойствам относились атомная масса, кристаллическая форма, плотность, атомный объем и форма соединений. Первый вариант системы элементов позволил Д.И.Менделееву сделать основные выводы из нее:
  •  свойства элементов, расположенных в соответствии с величиной атомной массы, изменяются периодически;
  • величина атомной массы определяет характер элемента;
  • элементы с малыми атомными массами типические, они наиболее распространены в природе, свойства их выражены резко;
  • можно ожидать открытия еще многих неизвестных простых тел (элементов);
  • можно иногда уточнять атомные массы элементов, на основе их аналогов;
  • по величине массы атомов могут быть найдены аналоги элементов. На основании этих выводов и сформулирован закон.

 

  • Периодическая система химических элементов (табли́ца Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра.
  • Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. 
  • Фундаментальным принципом построения периодической системы является ее подразделение на группы и периоды. Группы, в свою очередь, подразделяются на главную (а) и побочную (b) подгруппы. В каждой подгруппе содержатся элементы — химические аналоги. Элементы а- и b-подгрупп в большинстве групп также обнаруживают между собой определенное сходство, главным образом в высших степенях окисления, которые, как правило, равны номеру группы.
  • Периодом называется совокупность элементов, которая начинается щелочным металлом и заканчивается инертным газом (особый случай — первый период). Каждый период содержит строго определенное количество элементов. Периодическая система состоит из восьми групп и семи периодов, причем седьмой пока не завершен.
  • Он содержит всего 2 элемента: водород и гелий. Место водорода в системе неоднозначно. Поскольку он проявляет свойства, общие со щелочными металлами и с галогенами, то его помещают либо в I А-, либо в VII А-подгруппу, причем последний вариант употребляется чаще. Гелий-первый представитель VIII А-подгруппы. Долгое время гелий и все инертные газы выделяли в самостоятельную нулевую группу. Это положение потребовало пересмотра после синтеза химических соединений криптона, ксенона и радона. В результате инертные газы и элементы бывшей VIII группы (железо, кобальт, никель и платиновые металлы) были объединены в рамках одной группы. Этот вариант не безупречен, так как инертность гелия и неона не вызывает сомнений.

 

 

  • Содержит 8 элементов. Он начинается щелочным металлом литием, единственная степень окисления которого + 1. Далее следует бериллий (металл, степень окисления + 2). Бор проявляет уже слабо выраженный металлический характер и является неметаллом (степень окисления + 3). Следующий за бором углерод — типичный неметалл, который проявляет степень окисления как +4, так и — 4. Азот, кислород, фтор и неон — все неметаллы, причем у азота высшая степень окисления + 5 соответствует номеру группы; для фтора известна степень окисления + 7. Инертный газ неон завершает период.

 

  

  • Также содержит 8 элементов. Характер изменения их свойств во многом аналогичен тому, который наблюдался для элементов второго периода. Но здесь есть и своя специфика. Так, магний в отличие от бериллия более металличен, так же как и алюминий по сравнению с бором. Кремний, фосфор, сера, хлор, аргон — все это типичные неметаллы. И все они, кроме аргона, проявляют высшие степени окисления, равные номеру группы.

 

 

 

 

 

 

  •    Содержит 18 элементов. По Менделееву, это первый большой период. После щелочного металла калия и щелочноземельного металла кальция следует ряд элементов, состоящий из 10 так называемых переходных металлов (скандий — цинк). Все они входят в b-подгруппы. Большинство переходных металлов проявляют высшие степени окисления, равные номеру группы, кроме железа, кобальта и никеля. Элементы, начиная с галлия и кончая криптоном, принадлежат к А-подгруппам. Криптон в отличие от предшествующих инертных газов может образовывать химические соединения.

 

 

  •   По своему построению аналогичен четвертому. В нем также содержится вставка из 10 переходных металлов (иттрий — кадмий). У элементов этого периода есть свои особенности. В триаде рутений — родий — палладий для рутения известны соединения, где он проявляет степень окисления +8. Все элементы А-подгрупп проявляют высшие степени окисления, равные номеру группы, исключая ксенон. Можно заметить, что особенности изменения свойств у элементов четвертого и пятого периодов по мере роста Z имеют по сравнению со вторым и третьим периодами более сложный характер. 

 

  • включает 32 элемента. В этом периоде кроме 10 переходных металлов (лантан, гафний — ртуть) содержится еще и совокупность из 14 лантаноидов — от церия до лютеция. Элементы от церия до лютеция химически очень похожи, и на этом основании их давно включают в семейство редкоземельных элементов. В короткой форме периодической системы ряд лантан видов включают в клетку лантана и расшифровку этого ряда дают внизу таблицы. 
  • В чем состоит специфика элементов шестого периода? В триаде осмий — иридий — платина для осмия известна степень окисления +8. Астат имеет достаточно выраженный металлический характер. Радон, по всей вероятности, обладает наибольшей реакционной способностью из всех инертных газов. К сожалению, из-за того, что он сильно радиоактивен, его химия мало изучена).

 

  • Начинается с франция. Подобно шестому, он также должен содержать 32 элемента, но из них пока известен 21. Фракций и радий соответственно являются элементами I а- и I I а-подгрупп, актиний принадлежит к III b-подгруппе. Дальнейшее построение седьмого периода спорно. Наиболее распространено представление о семействе актиноидов, которое включает элементы от тория до лоуренсия и аналогично лантаноидам. Расшифровка этого ряда элементов также дается внизу таблицы.

 

  • Свойства химических элементов а так же характер и свойства их соединений находятся в периодической зависимости от зарядов атомных ядер элементов.
  •  
       Структура периодической системы химических элементов тесно связана со строением атомов химических элементов. По мере роста Z периодически повторяются сходные типы конфигурации внешних электронных оболочек. А именно они определяют основные особенности химического поведения элементов. Эти особенности по-разному проявляются для элементов A-подгрупп (s- и р-элементы), для элементов b-подгрупп (переходные d-элементы) и элементов f-семейств — лантаноидов и актиноидов. Особый случай представляют элементы первого периода — водород и гелий. Для водорода характерна высокая химическая активность, потому что его единственный b-электрон легко отщепляется. В то же время конфигурация гелия (1st) весьма устойчива, что обусловливает его полную химическую бездеятельность. 

 

 

  •    У элементов А-подгрупп происходит заполнение внешних электронных оболочек (с n, равным номеру периода); поэтому свойства этих элементов заметно изменяются по мере роста Z. Так, во втором периоде литий (конфигурация 2s) — активный металл, легко теряющий единственный валентный электрон; бериллий (2s~) — также металл, но менее активный вследствие того, что его внешние электроны более прочно связаны с ядром. Далее, бор (2з'р) имеет слабо выраженный металлический характер, а все последующие элементы второго периода, у которых происходит построение 2р-подоболочки, являются уже неметаллами. Восьмиэлектронная конфигурация внешней электронной оболочки неона (2s~р~) — инертного газа — очень прочна.

 

  • П. з. имеет огромное естественнонаучное и философское значение. Он позволил рассматривать все элементы в их взаимной связи и прогнозировать свойства неизвестных элементов.
  • Благодаря П. з. многие научные поиски получили целенаправленный характер. П. з.- яркое проявление действия общих законов диалектики, в частности закона перехода количества в качество

Информация о работе Периодический закон и периодическая система Д.И.Менделеева