Нефтяные эмульсии

Автор работы: Пользователь скрыл имя, 25 Сентября 2014 в 14:12, лекция

Краткое описание

Вода в нефти появляется в результате поступления к скважине пластовой воды или воды, закачиваемой в пласт с целью поддержания давления. При движении нефти и пластовой воды по стволу скважины и нефтесборным трубопроводам происходит их взаимное перемешивание и дробление. Процесс дробления одной жидкости в другой называют диспергированием. В результате диспергирования одной жидкости в другой образуются эмульсии.
Эмульсии представляют собой дисперсные системы двух жидкостей, не растворимых или малорастворимых друг в друге, находящихся во взвешенном состоянии в виде мелких капель (глобул).

Вложенные файлы: 1 файл

УИРС 2.docx

— 51.99 Кб (Скачать файл)

Введение

Подготовка нефти на промыслах занимает промежуточное положение среди основных процессов, связанных с добычей, сбором и транспортированием товарной нефти потребителю: нефтеперерабатывающим заводам или на экспорт. От того, как подготовлена нефть в районах её добычи, зависят эффективность и надёжность работы магистрального трубопроводного транспорта. Перекачка вместе с нефтью даже 1-2% балласта (в виде эмульгированных глобул воды и частиц механических примесей) способствует более интенсивному коррозионному износу насосного оборудования [1], снижает пропускную способность трубопроводов и повышает опасность их порывов. Повышенное содержание воды в нефти, поступающих на переработку, ухудшает качество получаемых из неё продуктов, создаёт проблемы (на НПЗ) борьбы с коррозией, закупоркой теплообменной и нефтеперегонной аппаратуры.

При добыче и переработке нефть дважды смешивается с водой, образуя эмульсии: при выходе с большой скоростью из скважины вместе с сопутствующей ей пластовой водой и в процессе обессоливания, т.е. промывки пресной водой для удаления хлористых солей. В результате эффективного разрушения образующихся в производственных процессах нефтяных эмульсий улучшаются свойства нефти и нефтепродуктов, и увеличивается срок службы нефтеперерабатывающих установок.

 

 

 

 

 

Нефтяные эмульсии

Вода в нефти появляется в результате поступления к скважине пластовой воды или воды, закачиваемой в пласт с целью поддержания давления. При движении нефти и пластовой воды по стволу скважины и нефтесборным трубопроводам происходит их взаимное перемешивание и дробление. Процесс дробления одной жидкости в другой называют диспергированием. В результате диспергирования одной жидкости в другой образуются эмульсии.

Эмульсии представляют собой дисперсные системы двух жидкостей, не растворимых или малорастворимых друг в друге, находящихся во взвешенном состоянии в виде мелких капель (глобул). Жидкость, в которой распределены глобулы, называются дисперсной средой, а вторая жидкость, распределенная в дисперсной среде, - дисперсной фазой. При образовании эмульсии увеличивается поверхность дисперсной фазы, поэтому для осуществления процесса эмульгирования должна быть затрачена определенная работа, которая концентрируется на поверхности раздела фаз в виде свободной поверхностной энергии. Энергия, затраченная на образование единицы межфазной поверхности, называется поверхностным (межфазным) натяжением. Глобулы дисперсной фазы имеют сферическую форму, т.к. такая форма имеет наименьшую поверхность и наименьшую свободную энергию для данного объема. Форму шара можно исказить лишь сила тяжести или сила электрического поля.

Свободная энергия капель дисперсной фазы способствует их слиянию (коалесценции), но помехой этому в устойчивых эмульсиях являются стабилизаторы эмульсии. Растворимые в воде (гидрофильные), эмульгаторы способствуют образованию эмульсий - вода в нефти. Последний тип, чаще всего встречается в промысловой практике. К гидрофильным относятся такие поверхностно-активные вещества, как щелочные мыла, желатин, белковые вещества. Гидрофобными являются хорошо растворимые в нефтепродуктах смолы, известковые мыла, а также мелкодисперсные частицы сажи, глины, песка, окислов металлов, легче смачиваемые нефтью, чем водой. Введение в эмульсию данного типа эмульгатора, способствующего образованию эмульсии противоположного типа, облегчает её расслоение. От концентрации эмульгаторов-стабилизаторов эмульсии в нефти и их состава главным образом зависит устойчивость образующихся нефтяных эмульсий. Установлено, что устойчивость, возрастает с увеличением концентрации стабилизаторов до насыщения адсорбционного слоя или, до достижения оптимальных структурно-механических свойств слоя. Стабилизаторы входят в контакт друг с другом и с нефтяной и водной фазами, образуют механически прочные защитные плёнки, препятствующие процессу коалесценции капель воды в нефти. Состав весьма разнообразен. Сюда входят асфальтены, смолы нафтеновых кислот и тяжелых металлов, парафины, церезины, тонкодисперсные неорганические вещества, состоящие из глины, песка и горных пород. По характеру дисперсной фазы и дисперсной среды различают эмульсии двух типов: первые эмульсии прямого типа - неполярная жидкость в полярной, когда нефть размещается в виде мелких капель в воде (Н/В); и вторые обратного типа - эмульсии полярной жидкости в неполярной, когда вода размещается в виде мелких капелек в нефти (В/Н). В эмульсиях типа Н/В внешней фазой является вода, и поэтому они смешиваются с водой в любых отношениях и обладают высокой электропроводностью, а эмульсии типа Н/В смешиваются только с углеводородной жидкостью и имеют низкую электропроводность.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Методы разрушения  нефтяных эмульсий.

 

При подготовке нефтей к переработке разрушение эмульсий производится дважды: сначала деэмульгированию подвергают исходную эмульсионную нефть (процесс обезвоживания); затем — искусственную эмульсию, создаваемую при перемешивании нефти с промывной пресной водой (процесс обессоливания).

Задачей процесса обезвоживания является разрушение эмульсии, образовавшейся на промыслах при добыче нефти, с целью отделения от нефти соленой пластовой воды, содержащейся в ней в диспергированном состоянии. Вследствие того, что минеральные соли не растворимы в нефти, они растворимы в диспергированной воде. Количество растворенных в пластовой воде солей (в основном хлориды и сульфаты натрия, калия, кальция, магния) может быть различным, зависит от месторождения и может достигать 5-7 тысяч миллиграмм/литр нефти, содержащей воду, или 200-300 грамм на литр воды. Поэтому даже при глубоком обезвоживании нефти до содержания, например, 0,1% остаточной воды для большинства нефтей содержание хлористых солей составляет около 100-300 миллиграмм на литр, что совершенно недопустимо для товарной нефти, поставляемой на НПЗ. Для удаления оставшихся солей применяют процесс обессолива-ния, то есть промывают нефть пресной водой, создавая искусственную эмульсию с последующим отделением воды с растворенными в ней солями. Эмульсии нефти с пресной водой при обессоливании иногда бывают более устойчивы, чем с пластовой. Это частично объясняется тем, что пресная вода имеет меньшую плотность, чем пластовая, поэтому она отстаивается значительно медленнее при прочих равных условиях. Кроме того, при обезвоживании из нефти удаляются более крупные капельки воды по сравнению с оставшимися в нефти. Чтобы удалить из нефти оставшиеся мелкие капельки пластовой воды, содержащие большое количество солей, в нефть вводится от 5 до 20% пресной промывочной воды. При перемешивании нефти с пресной водой образуется эмульсия, которая на следующей ступени обрабатывается одним из методов обезвоживания. Вода, выделяющаяся при деэмульсации этой искусственной эмульсии, выносит с собой соли, а общее количество оставшихся в нефти солей доходит до < 30 мг/л и ниже.

Процесс разрушения нефтяных эмульсий можно разбить на 3 элементарные стадии:

  • Столкновение взвешенных водяных капелек.
  • Слияние их в более крупные.
  • Осаждение укрупнившихся капель.

Чтобы обеспечить возможно большее число столкновений водяных капелек, увеличивают скорость их движения в нефти различными способами: перемешиванием в специальных смесителях, при помощи ультразвука, электрического поля, подогрева и т. п. Как показывает опыт, не каждое столкновение приводит к слиянию столкнувшихся капель, то есть не каждое столкновение оказывается эффективным. В нефтяных эмульсиях это усугубляется наличием на поверхности водяной капельки прочной адсорбционной оболочки эмульгатора. Поэтому для того чтобы столкновение водяных капелек было эффективным, необходимо, по крайней мере:

– увеличить скорость движения капелек настолько, чтобы энергия столкновения была достаточной для разрушения прочной адсорбционной оболочки, или

– ослабить структурно-механическую прочность адсорбционной пленки, или

– совместное воздействие на эмульсию этих двух факторов. Для осаждения укрупнившихся водяных капелек также необходимы определенные условия. Ускорить расслоение фаз эмульсии можно, увеличив размер водяных капелек, разность плотностей воды и нефти и уменьшив вязкость нефти или применив искусственно созданные вторичные ускорения.

При увеличении температуры до 80-100°С разность плотностей увеличивается примерно на 10-20%. Вязкость большинства нефтей очень резко снижается при увеличении температуры до 60-70°С. При дальнейшем повышении температуры снижение вязкости незначительно. Повышение температуры, кроме того, уменьшает прочность адсорбционных слоев на границе раздела фаз.

Все существующие способы по типу энергии, прилагаемой для разрушения нефтяных эмульсий, можно разделить на следующие группы:

1. Механические — фильтрация, центрифугирование, обработка ультразвуком.

2. Термические — подогрев и отстаивание при атмосферном давлении и под избыточным давлением, промывка горячей водой.

3. Физико-химические — обработка эмульсии различными (чаще всего поверхностно-активными) реагентами-деэмульгаторами.

4. Электрические — обработка  эмульсии в постоянном или  переменном электрическом поле.

Ввиду того, что эффективность деэмульсации определяется множеством факторов, на практике ни один из перечисленных способов в чистом виде не применяется. В промышленности нашли применение сочетания различных способов, или комбинированные методы разрушения нефтяных эмульсий.

Однако при создании или анализе работы таких комбинированных установок необходимо учитывать как достоинства, так и недостатки каждого из способов, слагающих данную комбинацию.

  • Механические способы разрушения эмульсий

Все механические способы разрушения нефтяных эмульсий имеют очень ограниченное применение (фильтрация, центрифугирование), а некоторые (например, обработка ультразвуком) применяются только в лабораторных условиях. Поэтому кратко рассмотрим только два первых способа.

  1. Фильтрация

Этот способ разделения фаз эмульсий основан на явлении селективного смачивания фазами фильтрующего вещества. В качестве фильтрующих веществ используются такие материалы, как гравий, битое стекло, древесные и металлические стружки, солома, стекловата и другие.

Разрушение нефтяных эмульсий фильтрацией в принципе может быть осуществлено двумя путями. Собственно фильтрация — в качестве фильтра выбирается гидрофобный или гидрофобизированный материал, то есть материал, не смачиваемый дисперсной фазой (водой). В этом случае капельки воды удерживаются фильтром, а дисперсионная среда (нефть, углеводород) свободно проходит через него.

Псевдофильтрация — в качестве фильтра выбирается гидрофильный материал. В этом случае дисперсная фаза (водяные капельки) в силу хорошей смачиваемости входит в капиллярные каналы фильтра и растекается по их поверхности. Фильтр при этом набухает. Дисперсионная среда (нефть), прокачиваемая через фильтр, не удерживается им. В нефтяной промышленности находит ограниченное применение второй способ фильтрации. Для осуществления фильтрации в зависимости от фильтрующих материалов используют насыпные и набивные фильтры.

Насыпные фильтры состоят из слоев мелкозернистых материалов (гравий, битое стекло и т. д.). Набивные фильтры состоят из нескольких слоев волокнистых материалов (стеклоткань, стекловата, солома и т. д.). Принципиальная схема фильтрующей установки представляется следующим образом. Подогретая до 70-90°С эмульсия, прокачивается через фильтрационные колонны снизу вверх. При прохождении эмульсии через фильтры капельки воды, хорошо смачивающей фильтрующее вещество, задерживаются на фильтре, укрупняются и по капиллярным каналам стекают в нижнюю часть колонны. Нефть с верха колонны подается либо в следующую фильтрующую колонну (если это требуется по условиям деэмульсации), либо через группу сырьевых теплообменников отводится в емкость.

Деэмульсация фильтрацией широкого промышленного применения не получила и применяется крайне редко вследствие громоздкости, малой производительности и необходимости часто заменять фильтры.

  1. Центрифугирование

Способ деэмульсации центрифугированием основан на использовании эффекта различия плотностей дисперсной фазы и дисперсионной среды в сочетании с искусственно создаваемым центробежным полем. Поле создается в аппарате (центрифуге), где за счет больших скоростей вращения величина центробежного ускорения может быть во много раз больше ускорения свободного падения. При этом если плотность вещества дисперсной фазы больше плотности дисперсионной среды (что чаще всего имеет место в случае нефтяных эмульсий), то частицы дисперсной фазы будут отбрасываться к периферии центрифуги. Здесь водяные капельки дисперсной фазы эмульсии концентрируются, укрупняются и стекают вниз вдоль стенок центрифуги.

Обезвоженная нефть и вода из центрифуги отводятся по самостоятельным трубам. Водяная капелька дисперсной фазы, двигаясь в дисперсионной среде, испытывает не только действие центробежных сил (F1), но и сил трения вязкой углеводородной среды (F2).

Скорость разделения фаз при центрифугировании может быть во много раз больше, так как в данном случае силы гравитационного поля заменяются в десятки тысяч раз большими центробежными силами. Центрифугирование как способ разрушения нефтяных эмульсий получил весьма ограниченное применение ввиду большой стоимости, низкой производительности сложного аппарата центрифуги, требующего высококвалифицированного обслуживания.

  • Термические способы разрушения эмульсий

Термическая обработка нефтяных эмульсий (подогрев, промывка горячей водой при атмосферном или под избыточным давлением) имеет целью увеличение скорости отстоя взвешенных в нефти водяных капелек. Повышение температуры эмульсии способствует увеличению скорости броуновского движения капелек дисперсной фазы, а следовательно, увеличивает вероятность взаимных столкновений капелек и их укрупнение.

Кроме того, как уже указывалось, повышение температуры благотворно сказывается на вязкости нефти и разности плотностей дисперсной фазы и дисперсионной среды, значительно уменьшая первую и несколько увеличивая последнюю. И, наконец, повышение температуры эмульсии способствует ослаблению прочности адсорбционных оболочек эмульгаторов на поверхности капелек, а также увеличению растворимости и пептизации в нефти вещества адсорбционных оболочек, что способствует увеличению эффективности столкновений водяных капелек. К недостаткам термических способов разрушения эмульсий следует отнести следующее. Повышение температуры увеличивает давление насыщенных паров особенно легких фракций нефти. Поэтому для исключения возможных потерь нефтепродуктов отстой ведут под давлением, что в свою очередь ведет к удорожанию конструкции в связи с большей металлоемкостью. Кроме того, к недостаткам термических методов относятся потери значительного количества тепла с дренируемой водой. Самым существенным недостатком термических способов разрушения эмульсий является то, что не все эмульсии могут быть разрушены этими способами. Прежде всего это относится к эмульсиям нефтей восточных районов нашей страны, дисперсная водяная фаза которых имеет на своей поверхности очень прочную адсорбционную оболочку эмульгаторов.

Информация о работе Нефтяные эмульсии