Контрольная работа по "Химии"

Автор работы: Пользователь скрыл имя, 30 Мая 2013 в 22:32, контрольная работа

Краткое описание

1. Вопрос 6. Фракционный состав нефти. Кривая ИТК.
2. Вопрос 20. Азотсодержащие соединения нефтей.
Их влияние на качество нефтепродуктов.
3. Вопрос 26. Молекулярная масса нефтей и нефтепродуктов.
Основные формулы для расчета средней
молекулярной массы нефтяной фракции от средней
температуры кипения.

Вложенные файлы: 1 файл

КОНТРОЛЬНАЯ ХТНГ 1.doc

— 356.50 Кб (Скачать файл)

Контрольная  №  1

 

1. Вопрос 6. Фракционный состав  нефти. Кривая ИТК.

 

Введение

 

Нефть представляет собой сложную смесь жидких органических веществ, в которых растворены различные  твердые углеводороды и смолистые  вещества. Кроме того, часто в  ней растворены и сопутствующие нефти газообразные углеводороды. Разделение сложных смесей на более простые или в пределе – на индивидуальные компоненты называется фракционированием. Методы разделения базируются на различии физических, поверхностных и химических свойств разделяемых компонентов. При исследовании и переработке нефти и газа используются следующие методы разделения: физическая стабилизация (дегазация), перегонка и ректификация, перегонка под вакуумом, азеотропная перегонка, молекулярная перегонка, адсорбция, хроматография, применение молекулярных сит, экстракция, кристаллизация из растворов, обработка как химическими реагентами, так и карбамидом (с целью выделения парафинов нормального строения). Всеми этими методами возможно получить различные фракции, по составу и свойствам резко отличающиеся от исходного продукта. Часто эти методы комбинируют. Так, например, абсорбция и экстракция при разделении смолистых веществ или экстракция и перегонка в процессе экстрактивной перегонки. При детальном исследовании химического состава нефти практически используются все перечисленные выше методы.

Наиболее распространенные методы и положены в основу заводской  переработки нефти. В процессе перегонки  при постепенно повышающейся температуре  компоненты нефти отгоняются в порядке возрастания их температур кипения.

Для всех индивидуальных веществ  температура кипения при данном давлении является физической константой. Так как нефть представляет собой  смесь большого числа органических веществ, обладающих различным давлением  насыщенных паров, то говорить о температуре кипения нефти нельзя.

В условиях лабораторной перегонки  нефти или нефтепродуктов при  постепенно повышающейся температуре  отдельные компоненты отгоняются в  порядке возрастания их температур кипения, или то же самое, в порядке уменьшения давления их насыщенных паров. Следовательно, нефть и ее продукты характеризуются не температурами кипения, а температурными пределами начала и конца кипения и выходом отдельных фракций, перегоняющихся в определенных температурных интервалах. По результатам перегонки и судят о фракционном составе.

 

1. Фракционный  состав нефти

 

Поскольку нефть  представляет собой многокомпонентную  непрерывную смесь углеводородов  и гетероатомных соединений, то обычными методами перегонки не удается разделить  их на индивидуальные соединения со строго определенными физическими константами, в частности температурой кипения при данном давлении. Принято разделять нефть и нефтепродукты путем перегонки на отдельные компоненты, каждый из которых является менее сложной смесью. Такие компоненты называют фракциями или дистиллятами. В условиях лабораторной или промышленной перегонки отдельные нефтяные фракции отгоняются при постоянно повышающейся температуре кипения. Следовательно, нефть и ее фракции характеризуются не температурой кипения, а температурными пределами начала кипения и конца кипения.

При исследовании качества новых  нефтей (т. е. составлении технического паспорта), их фракционный состав определяют на стандартных перегонных аппаратах, снабженных ректификационными колоннами (например, на АРН–2 по ГОСТ 11011–85). Это позволяет значительно улучшить четкость погоноразделения и построить по результатам перегонки так называемую кривую истинной температуры кипения в координатах температура — выход фракций в % мас., (или % об.).

Нефти различных  месторождений значительно различаются  по фракционному составу и, следовательно, по потенциальному содержанию дистиллятов  моторного топлива и смазочных  масел. Большинство нефтей содержит 10–30 % бензиновых фракций, выкипающих до 200 °С  и 40–65% керосиногазойлевых фракций, перегоняющихся до 350 °С. Известны месторождения легких нефтей с высоким содержанием светлых (до 350 °С). Так, Самотлорская нефть содержит 58 % светлых, а газоконденсаты большинства месторождений почти полностью (85–90 %) состоят из светлых. Добываются также очень тяжелые нефти, состоящие в основном из высококипящих фракций (например, нефть Ярегского месторождения, добываемая шахтным способом).

Углеводный состав нефти — является наиболее важным показателем их качества, определяющим выбор метода переработки, ассортимент и эксплуатационные свойства получаемых нефтепродуктов. В исходных нефтях содержатся в различных соотношениях все классы углеводов, кроме алкенов: алканы, цикланы, арены, а также гетероатомные соединения. Алканы (СnН2n+2) — парафиновые углеводы — составляют значительную часть групповых компонентов нефтей, газоконденсатов и природных газов. Общее содержание их в нефтях составляет 25–75 % маc. и только в некоторых парафинистых нефтях типа Мангышлакской достигает 40–50 %. С повышением молярной фракций нефти содержание в них алканов уменьшается. Попутные нефтяные и природные газы практически полностью, а прямогонные бензины чаще всего на 60–70 % состоят из алканов. В масляных фракциях их содержание снижается до 5–20 % маc. Из алканов в бензинах преобладают 2- и 3-монометилзамещенные, при этом доля изоалканов с четвертичным углеродным атомом меньше, а этил- и пропилзамещенные изоалканы практически отсутствуют. С увеличением числа атомов углерода в молекуле алканов свыше 8 относительное содержание монозамещенных снижается. В газойлевых фракциях (200–350 °С) нефтей содержатся алканы от додекана до эйкозана. Установлено, что среди алканов в них преобладают монометилзамещенные и изопреноидные (с чередованием боковых метильных групп через три углеродных атома в основе углеродной цепи) структуры. В среднем содержание алканов изопреноидного строения составляет около 10–11 %.

Циклоалканы (ц. СnН2n) — нафтеновые углеводы — входят в состав всех фракций нефтей, кроме  газов. В среднем в нефтях различных типов они содержатся от 25 до 80 % мас. Бензиновые и керосиновые фракции представлены в основном гомологами циклопентана и циклогексана, преимущественно с короткими (C1 — С3) алкилзамещенными цикланами. Высококипящие фракции содержат преимущественно полициклические гомологи цикланов с 2–4 одинаковыми или разными цикланами сочлененного или конденсированного типа строения. Распределение цикланов по фракциям нефти самое разнообразное. Их содержание растет по мере утяжеления фракций и только в наиболее высококипящих масляных фракциях падает. Можно отметить следующее распределение изомеров цикланов: среди С7 — циклопентанов преобладают 1,2 — и 1,3-диметилзамещенные; С8 — циклопентаны представлены преимущественно триметилзамещенными; среди алкилциклогексанов преобладает доля ди- и триметилзамещенные, не содержащие четвертичного атома углерода.

Цикланы являются наиболее высококачественной составной  частью моторного топлива и смазочных  масел. Моноциклические цикланы  придают моторному топливу высокие эксплуатационные свойства, являются более качественным сырьем в процессах каталитического реформинга. В составе смазочных масел они обеспечивают малое изменение вязкости от температуры (т. е. высокий индекс). При одинаковом числе углеродных атомов цикланы по сравнению с алканами характеризуются большей плотностью и, что особенно важно, меньшей температурой застывания.

Арены (ароматические  углеводороды) с эмпирической формулой СnНn+2–2Ка (где Ка — число ареновых колец) — содержатся в нефтях обычно в меньшем количестве (15–50 %), чем алканы и цикланы, и представлены гомологами бензола в бензиновых фракциях. Распределение их по фракциям различно и зависит от степени ароматизированности нефти, выражающейся в ее плотность. В легких нефтях содержание аренов с повышением температуры кипения фракции, как правило, снижается. Нефти средней плотности цикланового типа характеризуются почти равномерным распределением аренов по фракциям. В тяжелых нефтях содержание их резко возрастает с повышением температуры кипения фракций. Установлена следующая закономерность распределения изомеров аренов в бензиновых фракциях: из C8-аренов больше 1,3-диметилзамещенных, чем этилбензолов; С9-аренов преобладают 1,2,4-триметилзамещенные. Арены являются ценными компонентами в автобензине (с высокими октановым числом), но нежелательными в реактивном топливе и дизельном топливе. Моноциклические арены с длинными боковыми алкильными цепями придают смазочным маслам хорошие вязкостно-температурные свойства.

 

2. Основные  нефтяные фракции 

Из нефти выделяют разнообразные продукты, имеющие  большое практическое значение. Сначала  из нее удаляют растворенные газообразные углеводороды (преимущественно метан). После отгонки летучих углеводородов  нефть нагревают. Первыми переходят  в парообразное состояние и отгоняются углеводороды с небольшим числом атомов углерода в молекуле, имеющие относительно низкую температуру кипения. С повышением температуры смеси перегоняются углеводороды с более высокой температурой кипения. Таким образом можно собрать отдельные смеси (фракции) нефти. Чаще всего при такой перегонке получают четыре летучие фракции, которые затем подвергаются дальнейшему разделению.

Основные фракции нефти  следующие:

• Газолиновая фракция, собираемая от 40 до 200 °С, содержит углеводороды от С5Н12 до С11Н24. При дальнейшей перегонке выделенной фракции получают газолин (tкип = 40–70 °С), бензин

(tкип = 70–120 °С) – авиационный, автомобильный  и т.д.

• Лигроиновая фракция, собираемая в пределах от 150 до 250 °С, содержит углеводороды от С8Н18 до С14Н30. Лигроин применяется как горючее для тракторов. Большие количества лигроина перерабатывают в бензин.

• Керосиновая фракция включает углеводороды от С12Н26 до С18Н38 с температурой кипения от 180 до 300 °С. Керосин после очистки используется в качестве горючего для тракторов, реактивных самолетов и ракет.

• Газойлевая фракция (tкип > 275 °С), по-другому называется дизельным топливом.

• Остаток после перегонки  нефти – мазут – содержит углеводороды с большим числом атомов углерода (до многих десятков) в молекуле. Мазут также разделяют на фракции перегонкой под уменьшенным давлением, чтобы избежать разложения. В результате получают соляровые масла (дизельное топливо), смазочные масла (автотракторные, авиационные, индустриальные и др.), вазелин (технический вазелин применяется для смазки металлических изделий с целью предохранения их от коррозии, очищенный вазелин используется как основа для косметических средств и в медицине). Из некоторых сортов нефти получают парафин (для производства спичек, свечей и др.). После отгонки летучих компонентов из мазута остается гудрон. Его широко применяют в дорожном строительстве. Кроме переработки на смазочные масла мазут также используют в качестве жидкого топлива в котельных установках.

 

 

4. Кривые  ИТК и ОИ как характеристики нефти

 

Однократная перегонка  осуществляется испарением или дросселированием жидкой смеси. В связи с этим для  получения заданной доли отгона сырья  однократное испарение позволяет  вести процесс разделения с меньшей  вероятностью термического разложения компонентов смеси. В том случае, когда летучести компонентов разделяемой смеси различаются значительно и остаток представляет собой смесь тяжелых углеводородов со смолисто-асфальтеновыми соединениями, разделение методом дросселирования может вызвать достаточно резкое понижение температуры и увеличение вязкости остатка.

Вакуум и водяной пар  понижают парциальное давление компонентов  смеси и вызывают тем самым  кипение жидкости при меньшей  температуре. Простая перегонка  нефтяных смесей изображается кривыми однократного испарения (ОИ), устанавливающими зависимость доли отгона от температуры нагрева смеси. Кривые ОИ характеризуют также условные температуры кипения смеси при нечетком их разделении, а начальные и конечные точки кривой ОИ определяют соответственно истинные температуры кипения жидких смесей и конденсации паровых смесей заданного состава. Для равномерно выкипающей смеси кривые ОИ имеют незначительную кривизну в начале и в конце и являются практически прямыми линиями.

При определении фракционного состава нефть и нефтепродукты перегоняют в стандартном приборе при определенных условиях и в системе координат ("температура-отгон") строят график выкипания отдельных углеводородов и их смесей. При нагревании нефтепродукта в паровую фазу, прежде всего, переходят низкокипящие компоненты, обладающие высокой летучестью. По мере отгона низкокипящих компонентов остаток обогащается высококипящими компонентами. Чтобы сделать кипение безостановочным, жидкий остаток непрерывно подогревают. При этом в паровое пространство переходят все новые и новые компоненты с все возрастающими температурами кипения. Отходящие пары конденсируются в измерительной емкости или отбираются по интервалам температур кипения компонентов в виде отдельных нефтяных фракций. Данные разгонки представляют в виде таблицы или графика ("температура кипения - % отгона"). Линии на этом графике называют кривыми разгонки или кривыми фракционного состава. При четком делении смеси (то есть при использовании лабораторных методов периодической ректификации) получают кривые истинных температур кипения (ИТК), при нечетком делении - кривые условных температур кипения (кривые стандартной разгонки). Наиболее важными являются кривые ИТК. Их используют для определения фракционного состава сырой нефти, расчета физико-химических и эксплуатационных свойств нефтепродуктов и параметров технологического режима процессов перегонки и ректификации нефтяных смесей. Различие физико-химических свойств углеводородов используется для разделения топлив на узкие группы углеводородов и идентификации этих групп, а аддитивность некоторых свойств - для расчета количественного содержания групп углеводородов в смеси. При исследовании новых нефтей фракционный состав определяют на стандартных перегонных аппаратах, снабженных ректификационными колонками. Это позволяет значительно улучшить четкость погоноразделения и построить по результатам фракционирования кривую истинных температур кипения. Кривая ИТК показывает потенциальное содержание в нефти отдельных (узких) фракций, являющихся основой для последующей их переработки и получения товарных нефтепродуктов (автобензинных, реактивных, дизельных и энергетических топлив, смазочного масла и др.).

 

 

 

 

Вопрос 20. Азотсодержащие соединения нефтей.

                   Их влияние на качество нефтепродуктов.

 

 

Азотсодержащие  соединения

Во всех нефтях в небольших  количествах (менее 1 %) содержится азот в виде соединений, обладающих основными или нейтральными свойствами. Большая их часть концентрируется в высококипящих фракциях и остатках перегонки нефти. Азотистые основания могут быть выделены из нефти обработкой слабой серной кислотой. Их количество составляет в среднем 30 - 40% от суммы всех азотистых соединений.

Азотистые основания  нефти представляют собой гетероциклические соединения с атомом азота в одном (реже в двух) из колец, с общим числом колец до трех. В основном они являются гомологами пиридина (XXXI), хинолина (XXXII) и реже акридина (XXXIII).

Нейтральные азотистые  соединения составляют большую часть (иногда до 80%) азотсодержащих соединений нефти. Они представлены гомологами пиррола (XXXIV), бензпиррола-индола (XXXV) и карбазола (XXXVI).

С повышением температуры  кипения нефтяных фракций в них  увеличивается содержание нейтральных  и уменьшается содержание основных азотистых соединений (табл.3.2).

В кислотных экстрактах газойлевых фракций обнаружены гомологи пирролхинолина (XXXVII) и карбазолхинолина (XXXVIII), содержащие по 2 атома азота, один из которых имеет основную функцию, а другой нейтрален.

 

Теоретический интерес, с точки зрения генезиса нефти, представляет обнаружение производных аминокислот (содержат карбоксильные и аминогруппы, являются исходным материалом в растениях при биосинтезе гормонов, витаминов, пигментов и др.) и порфиринов, входящих в состав гемоглобинов, хлорофиллов, витаминов и др., участвующих в биологических процессах. Порфирины содержат в молекуле 4 пиррольных кольца и встречаются в нефтях в виде комплексов металлов - ванадия и никеля. Установлено, что они обладают каталитической активностью. Они сравнительно легко выделяются из нефти экстракцией полярными растворителями, такими, как ацетонитрил, пиридин, диметилформамид и др.

Азотистые соединения как  основные, так и нейтральные - достаточно термически стабильны и не оказывают  заметного влияния на эксплуатационные качества нефтепродуктов. Азотистые  основания используются как дезинфицирующие  средства, ингибиторы коррозии, как сильные растворители, добавки к смазочным маслам и битумам, антиокислители и т.д. Однако в процессах переработки нефтяного сырья проявляют отрицательные свойства - снижают активность катализаторов, вызывают осмоление и потемнение нефтепродуктов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Информация о работе Контрольная работа по "Химии"