Каталитический риформинг бензинов

Автор работы: Пользователь скрыл имя, 03 Февраля 2015 в 19:59, реферат

Краткое описание

Каталитический риформинг, один из важнейших процессов современной нефтеперерабатывающей и нефтехимической промышленности, широко используется для повышения детонационной стойкости бензинов и производства ароматических углеводородов, главным образом бензола, толуола и ксилолов. Важную роль играет каталитический риформинг также в обеспечении водородом процессов гидроочистки нефтяных продуктов.

Вложенные файлы: 1 файл

КАТАЛИТИЧЕСКИЙ РИФОРМИНГ БЕНЗИНОВ.doc

— 454.00 Кб (Скачать файл)

Механизм реакции дегидрирования циклогексана включает последовательное отщепление двух атомов водорода с образованием адсорбированного циклогексена. Предполагается, что эта стадия реакции - лимитирующая. Далее происходит отщепление одного за другим остальных четырех атомов водорода, в результате чего образуется бензол.

Все стадии реакции дегидрирования циклогексана на алюмоплатиновых катализаторах протекают быстро, а потому трудно обнаружить в газовой фазе циклогексен и циклогексадиен, а тем более доказать, что они являются промежуточными продуктами реакции. Чтобы обнаружить промежуточные продукты реакции, была поставлена серия опытов, в которых степень превращения циклогексана изменялась в пределах от 32,0 до 2,9% увеличением объемной скорости подачи углеводород от 1000 до 18 000 ч-1. Продукты реакции при малых степенях превращения циклогексана, наряду с бензолом, содержали заметные количества циклогексена.

Исходя из полученных результатов сделан вывод о том, что дегидрирование циклогексана в бензол протекает через промежуточную стадию образования циклогексена:

 

 

Отношение циклогексен/бензол значительно возрастает при частичной дезактивации алюмоплатинового катализатора в результате отравления серой. Такой эффект, вероятно, объясняется тем, что при отравлении катализатора серой скорость дегидрирования циклогексана в циклогексен снижается значительно меньше, чем скорость дегидрирования циклогексена в бензол.

Алкилциклогексаны с блокированными положениями, благодаря наличию в них четвертичного атома углерода (гем-диалкилы), подвергаются дегидрированию на платиновых катализаторах при более высоких температурах, при которых ароматизация сопровождается перегруппировками. Так, при дегидрировании 1,1-диметилциклогексана и подобных ему соединений происходит элиминирование метальной труппы, в результате чего образуются толуол и метан:

С другой стороны, происходит миграция метильных групп, что приводит к образованию изомеров ксилола.  

При осуществлении реакции на бифункциональном платиновом катализаторе 1,1-диметилциклогексан вероятно сперва подвергается изомеризации, после чего соответствующие изомеры диметилциклогексана превращаются в ксилолы. 

 

Реакции изомеризации

При изомеризации на бифункциональных металлических катализаторах, в том числе на платиновых, шестичленные нафтены могут подвергаться следующим превращениям:

  1. изомеризации шестичленного цикла в пятичленный

  1. перемещению алкильных заместителей в кольце

  1. изменению числа алкильных заместителей в цикле

 

 

Реакции изомеризации нафтенов протекают по карбкатионному механизму. Промежуточный продукт реакции - циклоолефин, образующийся в результате дегидрирования нафтена на металлическом участке катализатора. Циклоолефин мигрирует на кислотный участок носителя, где превращается в карбкатион. Реакции карбкатиона ведут к образованию изомерного циклоолефина, в результате гидрирования которого на металлическом участке получается углеводород, изомерный исходному. Так, схему изомеризации циклогексана в метилциклопентан можно представить следующим образом (М -металлические участки катализатора, А -кислотные):

Третичный карбкатион наиболее устойчив и не всегда способен к перегруппировкам. Поэтому протеканию перегруппировок может способствовать образование менее устойчивого, но более реакционноспособного вторичного карбкатиона. Исходя из этого, перемещение алкильных заместителей в кольце цикдогексана можно представить в следующем виде

Реакции типа (1) и (2) протекают значительно легче, чем реакции (3), ведущие к увеличению числа алкильных заместителей в цикле. Так, скорость изомеризации этилциклогексана меньше по сравнению со скоростью изомеризации других шестичленных нафтенов состава C8. Косвенным подтверждением служат результаты, полученные при каталитическом риформинге бензиновой фракции, состоящей из углеводородов С8 и обогащенной этилциклогексаном. Относительные количества ксилолов в катализате отвечали равновесию. Что же касается этилбензола, то выход его соответствовал содержанию этилцикдогексана в сырье и намного превышал равновесное содержание в смеси ароматических углеводородов состава С8.

Предложена схема изомеризации этилциклогексана в диметилциклогексаны, в соответствии с которой циклопентановые углеводороды являются промежуточными продуктами реакции:

Были изучены превращения метилциклогексана на платиновом катализаторе в условиях, при которых углеводород подвергался как изомеризации, так и дегидрированию (452 °С, 4,9 МПа, подача углеводорода 2 ч-1, отношение водород углеводород = 6,6). Выход, в моль (на 100 моль метилциклогексана) составил:

Углеводороды С1—С6

6

Алкилциклопентаны (1,1-, 1,2- и 1,3 диметилциклопентаны + этилциклопентан)

31

Метилциклогексан (непревращенный)

6

Толуол

56

Другие углеводороды

1


 

 

Таким образом, количество алкилциклопентанов в продуктах реакции в 5 раз превышало количество метилциклогексана.

Равновесие для реакции изомеризации циклогексана при 460-500 °С целиком сдвинуто в сторону метилциклопентана (содержание его в равновесной смеси с циклогексаном 93-94%). С другой стороны, при этих же температурах и парциальном давлении водорода до 2 МПа равновесие для реакции дегидрирования циклогексана также сильно смещено в сторону бензола. В этих условиях избирательность превращения циклогексана и других шестичленных нафтенов предопределяется относительными скоростями их дегидрирования и изомеризации, В соответствии с изложенным выше механизмом этих реакций, схему превращения циклогексана в бензол и метилциклопентан можно представить в следующем виде:

При чрезмерной кислотности катализатора скорости образования бензола и метилциклопентана становятся соизмеримыми, что должно привести к снижению селективности ароматизации циклогексана. Иллюстрацией подобного эффекта могут служить данные, полученные при каталитическом риформинге смеси этилциклогексана и диметилциклогексанов на двух типах платиновых катализаторов (495°С, 2МПа):

 

Степень превращения, %

Селективность ароматизации, %

Стандартный катализатор риформинга

97

97

Катализатор с высокой кислотностью

94

65


При близкой степени превращения сырья селективность его ароматизации оказалась значительно ниже при осуществлении процесса на платиновом катализаторе с высоким уровнем кислотности.

Обычно скорость ароматизации циклогексана значительно больше скорости его изомеризации на алюмоплатиновом катализаторе (приблизительно на два порядка).

Исходя из относительных скоростей дегидрирования и изомеризации циклогексана можно было ожидать, что наибольшая селективность его превращения в бензол будет достигнута при больших объемных скоростях пропускания углеводорода.

В промышленных условиях в первом по ходу сырья реакторе обычно поддерживают объемную скорость подачи сырья в пределах 10-15 ч-1, что способствует селективному превращению шестичленных нафтенов в ароматические углеводороды. 

 

 

ПРЕВРАЩЕНИЯ ПЯТИЧЛЕННЫХ НАФТЕНОВ

Превращения пятичленных нафтенов представляют значительный интерес не только потому, что сырье каталитического риформинга содержит такие углеводороды. Весьма существенно то, что пятичленные нафтены играют важную роль в качестве промежуточных продуктов реакции при дегидроциклизации парафинов в ароматические углеводороды.

В условиях каталитического риформинга пятичленные нафтены подвергаются изомеризации и реакциям, приводящим к раскрытию циклопентанового кольца. Реакции изомеризации могут сопровождаться либо перегруппировкой алкильных заместителей, либо приводить к превращению пятичленных нафтенов в шестичленные:

 
При осуществлении этой последней реакции на бифункциональном катализаторе риформинга, образующиеся при расширении цикла шестичленные нафтены подвергаются быстрому дегидрированию в ароматические углеводороды. Возможность достижения высокого выхода ароматических углеводородов зависит от селективности изомеризации пятичленных нафтенов в шестичленные. Протекающие параллельно реакции раскрытия пятичленного кольца ухудшают селективность реакции изомеризации и ведут к образованию парафинов:

 

 

Дегидроизомеризация

Дегидроизомеризация метилциклопентана явилась предметом многих исследований. Значительно меньше данных о том, как протекает эта реакция при превращении других алкилциклопентанов.

Изучалась дегидроизомеризация алкилциклопентанов С7-С9 на алюмоплатиновом катализаторе в мягких условиях (350 °С; 0,5 МПа), при которых реакция протекает достаточно селективно, а состав и строение получаемых ароматических углеводородов зависят от состава и строения исходных алкилциклопентанов.

Проведенные исследованиям показали, что преимущественное расширение циклопентанового кольца происходит за счет метиленовой, а не метильной группы:

Существует определенная взаимосвязь между расположением алкильных групп в алкилциклопентанах и получаемых ароматических углеводородах. Так, из 1,3-метилалкилциклопентанов получают главным образом мета-замещенные, а из 1,2-метилалкилциклопентанов орто-замещенные бензола:

 

 

Скорости дегидроизомеризации зависят от характера замещающих алкильных групп и их взаимного расположения в алкилциклопентанах. Вероятно эти зависимости играют определенную роль и для дегидроизомеризации алкилциклопентанов при более высоких температурах (~500 °С), свойственных процессу каталитического риформинга. Однако вследствие интенсивной изомеризации углеводородов в условиях этого процесса, состав образующихся алкилбензолов значительно меньше зависит от состава и строения исходных алкилциклопентанов. Например, если при дегидроизомеризации н-пропилциклопентана при 350 °С получают только этилбензол, то в случае осуществления реакции при 480°С, наряду с этим углеводородом образуются также изомеры ксилола. 

 

Химическое равновесие. На рис. 3 и 4 показано изменение состава равновесной смеси углеводородов в зависимости от температуры и парциального давления водорода для реакции:

Рис. 3. Зависимость содержания бензола, циклогексана и метилциклопентана в их равновесной смеси при парциальном давлении водорода 1,9 МПа от температуры: 1 - бензол, 2 -метилциклопентан; 3 - циклогексан.

Рис. 4. Зависимость содержания бензола, циклогексана и метилциклопентана в их равновесной смеси при 495 °С от парциального давления водорода: 1 - бензол; 2 - метилциклопентан; 3 -циклогексан.  

 

Повышение температуры от 400 до 500 °С при постоянном Рн2 1,9 МПа ведет к значительному изменению концентрации метилциклопентана и бензола в равновесной смеси. При 400 °С равновесие сильно сдвинуто в сторону метилциклопентана, а при 500 °С - в сторону бензола.

Молярное содержание бензола в равновесной смеси при 495 °С увеличивается от 45 до 90% при снижении Риз от 3,6 до 1,5 МПа и возрастает при дальнейшем его уменьшении. Равновесное молярное содержание циклогексана весьма низко и при 495°С, в зависимости от значения Рн2 лежит в пределах от 1 до 3%. Это, однако, не препятствует быстрому протеканию реакции дегидроизомеризации, что обусловлено большой скоростью превращения циклогексана в бензол на платиновых катализаторах риформинга.

Таким образом, если дегидроизомеризацию метилциклопентана проводить при обычных температурах каталитического риформинга (~500 °С), достаточно полное превращение углеводорода в бензол может быть достигнуто при значении Рн2 не превышающем 1,5 МПа. Эти условия в равной мере благоприятны для дегидроизомеризации других пятичленных нафтенов.

Кинетика и механизм реакции. Кинетические закономерности реакции дегидроизомеризации метилциклопентана были изучены как на алюмоплатиновом, так и на алюмоплатинорениевом катализаторах, не было обнаружено существенных различий в протекании реакции на этих катализаторах. При каталитическом риформинге метилциклопентана основными продуктами реакции являются бензол и гексаны: 

В значительно меньших количествах образуются метилциклопентены, циклогексан, а также парафины С1-С5.

На рис. 5 кривые не экстраполированы к началу координат, так как при малой степени превращения метилциклопентана с большой скоростью образуются непредельные углеводороды и циклогексан, которые предшествуют образованию бензола. Выход бензола в расчете на прореагировавший метилциклопентан остается постоянным (58%)и не зависит от степени превращения метилциклопентана. Начальный наклон кривых служит указанием на то, что скорость образования н-гексана значительно больше скорости образования изогексанов. 

 

Рис. 5. Зависимость выхода основных продуктов превращения метилциклопентана от степени его превращения. Катализатор 0,3% Pt + 0,3% Re/Аl2О3 + 0,6 % Cl; 454°C; 1.4МПа, молярное отношение водород:метилциклопентан =10:1; 1-бензол, 2-н-гексан; 3-2-метилпентан, 4-3- метилпентан. 

Информация о работе Каталитический риформинг бензинов