Каталитические процессы переработки природных энергоносителей и углеродных материалов

Автор работы: Пользователь скрыл имя, 24 Апреля 2015 в 13:48, контрольная работа

Краткое описание

Цеолиты и методы их получения. Характеристика цеолитов. Стадии гетерогенно-каталитических процессов. Гидрокрекинг нефтяных фракций.

Содержание

1. Структура цеолитов
2. Кристаллизация цеолитов из щелочных силикоалюмогелей
3. Направленный синтез цеолитов
4. Варьирование адсорбционных свойств цеолитов
Список использованной литературы

Вложенные файлы: 1 файл

контрольная потехин.docx

— 134.20 Кб (Скачать файл)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Контрольная работа № 1

Вариант 6

2.  Стадии  гетерогенно-каталитических  процессов.

Гетерогенно-каталитическая реакция на поверхности твердого катализатора – это сложный многостадийный процесс. Наблюдаемая общая скорость каталитической реакции зависит от относительных скоростей нескольких различных по своей физической и химической природе стадий.

Рассмотрим основные стадии процесса взаимодействия газообразного реагента с зерном пористого катализатора.

Основной поток

Согласно общепризнанной модели вблизи поверхности катализатора существует пограничная газовая ламинарная пленка, которая препятствует прохождению молекул газа через нее. Гетерогенно-каталитическая реакция протекает внутри поры катализатора. Доля реакций, протекающей на внешней поверхности катализатора ничтожно мала. Перенос вещества осуществляется за счет конвективной, и за счет молекулярной диффузии.

1-я стадия. Как и в гетерогенном некаталитическом процессе, сначала происходит диффузия газообразного реагента из основного потока к внешней поверхности зерна катализатора через газовую ламинарную пленку, в которой концентрация реагента ниже, а концентрация продукта выше, чем в основном потоке. Эту стадию можно назвать стадией внешней диффузии.

2-я стадия. Основная часть молекул газообразного реагента диффундирует внутри пор катализатора (стадия внутренней диффузии). Скорость диффузии молекул через пористую среду во много раз меньше скорости их поступательного движения. Это объясняется тем, что во время прохождения через катализатор молекулы сталкиваются со стенками пор и с другими молекулами, что приводит к совершенно беспорядочному их движению.

В зависимости от соотношения длины свободного пробега молекул и диаметра пор, а также от перепада давления вдоль поры различают объемное (свободное) течение газов, течение Кнудсена и вынужденное течение. Все эти виды диффузии можно описать уравнениями молекулярной диффузии (законы Фика).

3-я стадия. Молекулы реагента адсорбируются на поверхности катализатора. Адсорбция представляет собой явление, связанное с уменьшением количества газа при соприкосновении газа (адсорбата) с твердым телом (адсорбентом), и заключается в некотором уплотнении газа на поверхности твердого тела. Различают физическую адсорбцию и хемосорбцию в зависимости от природы сил, вызывающих это концентрирование молекул адсорбата у поверхности твердого тела. Если эти силы имеют такую же природу, как и молекулярное взаимодействие в газах, жидкостях и твердых телах, говорят о физической адсорбции. При хемосорбции проявляются силы взаимодействия химической природы – молекулы адсорбата теряют свою индивидуальность, образуя поверхностные соединения с адсорбентом. (стадия адсорбции)

При протекании каталитических процессов основная роль принадлежит хемосорбции, или активированной адсорбции, результатом которой является образование активированного комплекса адсорбции – неустойчивого промежуточного соединения между реагентом и катализатором. Стадия активированной адсорбции определяет специфичность действия катализаторов в отношении различных реакций. Если химическая связь реагента с адсорбентом слишком сильная, разрушение образовавшегося комплекса, ведущее к образованию продуктов, затрудняется. Если же связь адсорбента и адсорбата слишком слабая, близкая по своей природе к физической адсорбции, в молекуле адсорбата не происходит разрыхления связей, приводящих к снижению энергии активации каталитического процесса по сравнению с некаталитическим процессом.

4-я стадия. Вслед за адсорбцией происходит собственно поверхностная химическая реакция, которая заключается либо в перегруппировке активированного комплекса адсорбции, либо во взаимодействии одного адсорбированного реагента с молекулами другого. Механизм этой реакции может быть различным; от него зависит и вид кинетического уравнения. В результате поверхностной реакции образуется адсорбированный продукт. (кинетическая стадия).

5-я стадия. Следующим этапом процесса является десорбция продукта с поверхности катализатора. На этом этапе также проявляются специфические свойства катализатора: энергия связи адсорбированного продукта и адсорбента должна быть такой, чтобы десорбция в объем не вызывала затруднений. (стадия десорбции).

Стадии 3, 4, 5 являются центральными в ходе каталитического процесса. Суммарно их можно рассматривать как поверхностную химическую реакцию. Эти стадии могут протекать одновременно с предыдущими – диффузионными – стадиями, причем как на внешней поверхности зерна катализатора, так и на внутренней поверхности пор.

6-я стадия. Десорбированные газообразные продукты диффундируют из пор к внешней поверхности катализатора (обратная внутренняя диффузия).

7-я стадия. Газообразные продукты диффундируют от поверхности катализатора в газовый поток через пограничную пленку, окружающую зерно катализатора.

Таким образом, гетерогенно-каталитический процесс – это сложная система последовательных и параллельных стадий, имеющих разную природу. Как и в случае некаталитического гетерогенного процесса, одна из стадий может оказывать наиболее сильное тормозящее воздействие на весь процесс, тогда скорости остальных стадий «подстраиваются» под скорость этой наиболее затрудненной стадии, которая может быть названа лимитирующей.

В зависимости от лимитирующей стадии ГКП может протекать в следующих областях: внешнедиффузионной (наиболее медленная 1 и 7); внутренней диффузионной (наиболее медленная 2 и 6); область адсорбции и десорбции (4 и 5); кинетическая область (наиболее медленная 4).

Если ГКП протекает в тех случаях, когда скорости стадий соизмеримы между собой, то считают, что ГКП протекает в переходной области.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Контрольная  работа  № 2

           Вариант 6

1.  Гидрокрекинг  нефтяных  фракций.  Катализаторы  и  условия  проведения процесса.  Основные  реакции  при  гидрокрекинге  нефтяного  сырья.

 

Гидрокрекинг  нефтяных  фракций. 

По целевому назначению реализованные в промышленности процессы гидрокрекинга можно разделить на следующие:

 

1)    гидрокрекинг  бензиновых  фракций  с  целью  , получения сжиженного   нефтяного   газа,  углеводородов  С4—C5   изостроения для нефтехимического  синтеза и легкого высокооктанового  компонента автомобильных бензинов;

2)    гидрокрекинг  средних дистиллятов  (прямогонных  и вторичного происхождения)   с температурой  кипения  200—350 °С

с целью получения бензинов и реактивных топлив;

3)    гидрокрекинг  атмосферного  и  вакуумного  газойлей,  газойлей коксования и каталитического  крекинга с целью полу

чения бензинов, реактивного и дизельного топлив;

4)    гидрокрекинг  тяжелых  нефтяных    дистиллятов  с  целью получения реактивных  и дизельных топлив, смазочных  масел,

малосернистых котельных топлив и сырья для каталитического крекинга;

5)    селективный  гидрокрекинг бензинов с целью  повышения октановых чисел; реактивных  и дизельных топлив с целью  снижения температуры застывания; масляных фракций — для улучшения  цвета, стабильности и снижения    температуры    застывания;

6)    гидродеароматизация.

 

Катализаторы  и  условия  проведения процесса.

Ассортимент современных катализаторов гидрокрекинга достаточно обширен, что объясняется разнообразием назначений процесса. Обычно они состоят из следующих трех компонентов: кислотного, дегидро-гидрирующего и связующего, обеспечивающего механическую прочность и пористую структуру.

В качестве кислотного компонента, выполняющего крекирующую и изомеризующую функции, используют твердые кислоты, входящие в состав катализаторов крекинга: цеолиты, алюмосиликаты и оксид алюминия. Для усиления кислотности в катализатор иногда вводят галоген.

Гидрирующим компонентом обычно служат те металлы, которые входят в состав катализаторов гидроочистки: металлы VIII (Ni, Со, иногда Pt или Pd) и VI групп (Мо или W). Для активирования катализаторов гидрокрекинга используют также разнообразные промоторы: рений, родий, иридий, редкоземельные элементы и др. Функции связующего часто выполняет кислотный компонент (оксид алюминия, алюмосиликаты), а также оксиды кремния, титана, циркония, магний- и цирконийсиликаты.

Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами (с n- и р-проводимостями): они активны как в реакциях гидрирования -дегидрирования (гемолитических), так и в гетеролитических реакциях гидрогенолиза гетероатомных углеводородов нефтяного сырья. Однако каталитическая активность Мо и W, обусловливаемая их дырочной проводимостью, недостаточна для разрыва углерод - углеродных связей. Поэтому для осуществления реакций крекинга углеводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются по существу минимум трифункциональными, а селективного гидрокрекинга - тетрафункциональными, если учесть их молекулярно-ситовые свойства. Кроме того, когда кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учесть также специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмосиликате - крупнопористом носителе - в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводородов сырья, в то время как на цеолите — реакции последующего более глубокого крекинга - с изомеризацией среднемолекулярных углеводородов. Таким образом, катализаторы гидрокрекинга можно отнести к полифункциональным.

Значительно лучшие результаты гидрокрекинга достигаются при использовании катализаторов с высокой кислотной и оптимальной гидрирующей активностями, достоинства которых применительно к промышленным видам сырья заключаются в следующем.

1. Низок выход парафинов  С1 - С3 и особенно метана и этана.

2. Бутановая фракция содержит 60 - 80 % изобутана.

3. Пентановая и гексановая  фракции на 90 - 96 % состоят из изомеров. Циклопарафины С6 содержат около 90 % метилциклопентана. В результате  легкий бензин (до 85 °С), содержащий 80-90 % парафинов, до 5 % бензола и 10 - 20 % нафтенов, имеет достаточно высокие  антидетонационные характеристики: ОЧИМ составляют 85-88.

4. Бензины С7 и выше  содержат 40-50 % нафтенов, 0-20 % ароматических  и являются исключительно качественным  сырьем риформинга.

5.Керосиновые фракции  ввиду высокого содержания изопарафинов  и низкого - бициклических ароматических  углеводородов являются высококачественным  топливом для реактивных двигателей.

6. Дизельные фракции содержат  мало ароматических углеводородов  и преимущественно состоят из  производных циклопентана и циклогексана, имеют высокие цетановые числа  и относительно низкие температуры  застывания.

Большое значение уделяется в настоящее время катализаторам на цеолитной основе. Они обладают высокой гидрокрекирующей активностью и хорошей избирательностью. Кроме того, они позволяют проводить процесс иногда без предварительной очистки сырья от азотсодержащих соединений. Содержание в сырье до 0,2 % азота практически не влияет на их активность. Повышенная активность катализаторов гидрокрекинга на основе цеолитов обусловливается более высокой концентрацией активных кислотных центров (бренстедовских) в кристаллической структуре по сравнению с аморфными алюмосиликатными компонентами.

В случае переработки тяжелого сырья наибольшую опасность для дезактивации катализаторов гидрокрекинга представляют, кроме азотистых оснований, асфальтены и прежде всего содержащиеся в них металлы, такие, как никель и ванадий. Поэтому гидрокрекинг сырья, содержащего значительное количество гетеро- и металлорганических соединений, вынужденно проводят в две и более ступеней. На первой ступени в основном проходит гидроочистка и неглубокий гидрокрекинг полициклических ароматических углеводородов (а также деметаллизация). Катализаторы этой ступени идентичны катализаторам гидроочистки. На второй ступени облагороженное сырье перерабатывают на катализаторе с высокой кислотной и умеренной гидрирующей активностями.

При гидрокрекинге нефтяных остатков исходное сырье целесообразно подвергнуть предварительной деметаллизации и гидрообесриванию (как в процессе «Хайвал» и др.) на серо- и азотостойких катализаторах с высокой металлоемкостью и достаточно высокой гидрирующей, но низкой крекирующей активностями.

В процессе селективного гидрокрекинга в качестве катализаторов применяют модифицированные цеолиты (морденит, эрионит и др.) со специфическим молекулярно-ситовым действием: поры цеолитов доступны только для молекул нормальных парафинов. Дегидро-гидрирующие функции в таких катализаторах выполняют те же металлы и соединения, что и в процессах гидроочистки.

Для процесса гидрокрекинга характерны более высокие давления и температуры. При этом происходит одновременно расщепление и гидрирование компонентов сырья. Отличительная черта гидрокрекинга – получение продуктов значительно меньшей молекулярной массы, чем исходное сырье. С этой точки зрения процесс гидрокрекинга имеет много общего с процессом каталитического крекинга, но его основное отличие – присутствие водорода, тормозящее реакции, протекающие по цепному механизму. В результате в продуктах гидрокрекинга практически отсутствуют или содержатся в небольших количествах низшие углеводороды – метан и этан. Гидрокрекингу присущи также все основные реакции процесса гидроочистки. 

Информация о работе Каталитические процессы переработки природных энергоносителей и углеродных материалов