Автор работы: Пользователь скрыл имя, 11 Ноября 2012 в 23:13, реферат
Я́дерное ору́жие (или а́томное ору́жие) — совокупность ядерных боеприпасов, средств их доставки к цели и средств управления; относится к оружию массового поражения наряду сбиологическим и химическим оружием. Ядерный боеприпас — оружие взрывного действия, основанное на использовании ядерной энергии, высвобождающейся при цепной ядерной реакцииделения тяжёлых ядер и/или термоядерной реакции синтеза лёгких ядер.
Я́дерное ору́жие (или а́томное ору́жие) — совокупность ядерных боеприпасов, средств их доставки к цели
и средств управления; относится к оружию
массового поражения наряду сбиологическим и химическим ор
Классификация ядерных боеприпасов
Все ядерные боеприпасы могут быть разделены на две основные категории:
Атомная бомба построена на принципе освобождения колоссальной энергии при разделении тяжелых ядер урана или искусственного плутония. По законам ядерной физики, чтобы сделать атомную бомбу, необходимы либо радиоактивный изотоп урана-235 с обогащением 90%, либо радиоактивный изотоп плутония-239 с обогащением 94%. Атомная бомба, сброшенная над Хиросимой (мощность 20 килотонн), имела простую конструкцию: в ней два куска делящегося вещества просто сближались друг с другом, создавая критическую массу (пушечная и стволовая схема). Данная схема требует значительного количества рабочего материала: для создания атомной бомбы стволовой схемы требуется не менее 45 – 50 кг оружейного урана. Для плутония эта схема не пройдет: ядерная реакция начнется преждевременно, и взрывной эквивалент окажется мизерным. Кроме того, пушечная схема требует большого количества плутония. Оружейный плутоний используют в принятых на вооружение так называемых имплозионных бомбах. Мощность и коэффициент использования материала в них выше, чем в урановых бомбах, на два порядка. Но эта схема очень сложна, требует точнейшей схемы обжима заряда. В бомбе, сброшенной на Нагасаки для вызова цепной ядерной реакции применялся принцип иплозии, «взрыва во внутрь». С помощью системы специальных линз расходящиеся взрывные волны преобразовывались в сходящуюся сферически симметричную ударную волну, резко сжимающую шарик из делящегося материала. Создать такую бомбу куда сложнее, чем взорвавшуюся над Хиросимой
Реакция термоядерного синтеза, как правило, развивается внутри делящейся сборки и служит мощным источником дополнительных нейтронов. Только ранние ядерные устройства в 40-х годах XX в., немногочисленные бомбы пушечной сборки в 1950-х, некоторые ядерные артиллерийские снаряды, а также изделия ядерно-технологически слаборазвитых государств (ЮАР, Пакистан, КНДР) не используют термоядерный синтез в качестве усилителя мощности ядерного взрыва. Вопреки устойчивому стереотипу, в термоядерных (то есть двухфазных) боеприпасах бо́льшая часть энергии (до 85%) выделяется за счет деления ядер урана-235/плутония-239 и/или урана-238. Вторая ступень любого такого устройства может быть оснащена тампером из урана-238, который эффективно делится от быстрых нейтронов реакции синтеза. Так достигается многократное увеличение мощности взрыва и чудовищный рост количества радиоактивных осадков. С легкой руки Р. Юнга, автора знаменитой книги "Ярче тысячи солнц", написанной в 1958 году по «горячим следам» Манхэттенского проекта, такого рода «грязные» боеприпасы принято называть FFF (fusion-fission-fusion) или трехфазными. Однако этот термин не является вполне корректным. Почти все «FFF» относится к двухфазным и отличаются только материалом тампера, который в «чистом» боеприпасе может быть выполнен из свинца, вольфрама и т. д. Исключением являются устройства типа«Слойки» Сахарова, которые следует отнести к однофазным, хотя они имеют слоистую структуру взрывчатого вещества (ядро из плутония — слой дейтерида лития-6 — слой урана 238). В США такое устройство получило название Alarm Clock (Часы с будильником). Схема последовательного чередования реакций деления и синтеза реализована в двухфазных боеприпасах, в которых можно насчитать до 6 слоев при весьма «умеренной» мощности. Примером служит относительно современная боеголовка W88, в которой первая секция (primary) содержит два слоя, вторая секция (secondary) имеет три слоя, и ещё одним слоем является общая для двух секций оболочка из урана-238 (см. рисунок).
Существуют две основные схемы подрыва делящегося заряда: пушечная, иначе называемая баллистической, и имплозивная.
использовалась в некоторых моделях ядерного оружия первого поколения. Суть пушечной схемы заключается в выстреливании зарядом пороха одного блока делящегося вещества докритической массы («пуля») в другой — неподвижный («мишень»). Блоки рассчитаны так, что при соединении их общая масса становится сверхкритической.
Данный способ детонации возможен только в урановых боеприпасах, так как плутоний имеет на два порядка более высокий нейтронный фон, что резко повышает вероятность преждевременного развития цепной реакции до соединения блоков. Это приводит к неполному выходу энергии (fizzle или «пшик»). Для реализации пушечной схемы в плутониевых боеприпасах требуется увеличение скорости соединения частей заряда до технически недостижимого уровня. Кроме того, уран лучше, чем плутоний, выдерживает механические перегрузки.
Классическим примером такой схемы является бомба «Малыш» («Little Boy»), сброшенная на Хиросиму 6 августа 1945 г. Уран для её производства был добыт в Бельгийском Конго (нынеДемократическая Республика Конго), в Канаде (Большое Медвежье озеро) и в США (штат Колорадо). В бомбе «Little Boy» для этой цели использовался укороченный до 1,8 м ствол морского орудия калибра 16,4 см, при этом урановая «мишень» представляла собой цилиндр диаметром 100 мм, на который при «выстреле» надвигалась цилиндрическая «пуля» сверхкритической массы (38,5 кг) с соответствующим внутренним каналом. Такой «интуитивно непонятный» дизайн был сделан для снижения нейтронного фона мишени: в нём она находилась не вплотную, а на расстоянии 59 мм от нейтронного отражателя («тампера»). В результате риск преждевременного начала цепной реакции деления с неполным энерговыделением снижался до нескольких процентов.
Эта схема детонации
подразумевает получение
Принцип действия имплозивной схемы подрыва — по периметру делящегося вещества взрываются заряды конвенционального ВВ, которые создают взрывную волну, «сжимающую» вещество в центре и инициирующую цепную реакцию.
По такой схеме был исполнен и первый ядерный заряд (ядерное устройство «Gadget» (англ. gadget — приспособление), взорванный на башне в испытательных целях в ходе испытаний с выразительным названием «Trinity» («Троица») 16 июля 1945 года на полигоне неподалеку от местечка Аламогордо в штате Нью-Мексико), и вторая из примененных по назначению атомных бомб — «Толстяк» («Fat Man»), сброшенная на Нагасаки. Фактически, «Gadget» был лишенным внешней оболочки прототипом бомбы «Толстяк». В этой первой атомной бомбе в качестве нейтронного инициатора был использован так называемый «ёжик» (англ. urchin). (Технические подробности см. в статье «Толстяк».) Впоследствии эта схема была признана малоэффективной, и неуправляемый тип нейтронного инициирования почти не применялся в дальнейшем.
Мощность ядерного заряда, работающего исключительно на принципе деления тяжёлых элементов, ограничивается десятками килотонн. Энерговыход (англ. yield) однофазного боеприпаса, усиленного термоядерным зарядом внутри делящейся сборки, может достигать сотен килотонн. Создать однофазное устройство мегатонного класса практически невозможно, увеличение массы делящегося вещества не решает проблему. Дело в том, что энергия, выделяющаяся в результате цепной реакции, раздувает сборку со скоростью порядка 1000 км/с, поэтому она быстро становится докритической и бо́льшая часть делящегося вещества не успевает прореагировать. Например, в сброшенной на город Нагасаки бомбе «Толстяк» успело прореагировать не более 20 % из 6,2 кг заряда плутония, а в уничтожившей Хиросиму бомбе «Малыш» с пушечной сборкой распалось только 1,4 % из 64 кг обогащенного примерно до 80 % урана. Самый мощный в истории однофазный (британский) боеприпас, взорванный в ходе испытаний Orange Herald в 1957 г., достиг мощности 720 кт.
Двухфазные боеприпасы позволяют повысить мощность ядерных взрывов до десятков мегатонн. Однако ракеты с разделяющимися боеголовками, высокая точность современных средств доставки и спутниковая разведка сделали устройства мегатонного класса практически ненужными. Тем более, что носители сверхмощных боеприпасов более уязвимы для систем ПРО и ПВО.
Интересно отметить, что только термоядерный синтез обеспечил 97 % основного энерговыхода экспериментальной советской «Царь бомбе» (она же «Кузькина мать»), взорванной в 1961 г. с абсолютно рекордным выходом энергии около 58 Мт. Наиболее эффективным по отношению мощность/вес двухфазным боеприпасом стал американский «монстр» Mark 41 с мощностью 25 Мт, который выпускался серийно для развертывания на бомбардировщиках B-47, B-52 и в варианте моноблока для МБРТитан-2. Тампер этой бомбы выполнен из урана-238, поэтому она никогда не испытывалась в полном масштабе. При замене тампера на свинцовый мощность данного устройства понижалась до 3 Мт.
Основными
элементами ядерных боеприпасов
являются:
-корпус;
-система автоматики.
Корпус предназначен для размещения ядерного заряда и системы автоматики , а также предохраняет их от механического, а в некоторых случаях и от теплового воздействия.Система автоматики обеспечивает взрыв ядерного заряда в заданный момент времени и исключает его случайное или преждевременное срабатывание.
Она включает:
-систему предохранения и взедения;
-систему аварийного подрыва;
-систему подрыва заряда;
-источник питания;
-систему датчиков подрыва.
Средствами доставки ядерных боеприпасов могут являться баллистические ракеты, крылатые и зенитные ракеты, авиация. Ядерные боеприпасы применяются для снаряжения авиабомб, фугасов, торпед , артиллерийских снарядов (203,2 мм СГ и 155 мм СГ-США).
Средством доставки ядерного боеприпаса к цели может быть практически любое тяжелое вооружение. В частности, тактическое ядерное оружие с 1950-х существует в форме артиллерийских снарядов и мин — боеприпасов для ядерной артиллерии. Носителями ядерного оружия могут быть реактивные снаряды РСЗО, но пока ядерных снарядов для РСЗО не существует[1]. Однако, габариты многих современных ракет РЗСО позволяют разместить в них ядерный заряд, аналогичный применяемому ствольной артиллерией, в то время как некоторые РСЗО, например российский «Смерч», по дальности практически сравнялись с тактическими ракетами, другие же (например, американская система MLRS) способны запускать со своих установок тактические ракеты. Тактические ракеты и ракеты большей дальности являются носителями ядерного оружия. В Договорах по ограничению вооружений в качестве средств доставки ядерного оружия рассматриваютсябаллистические ракеты, крылатые ракеты и самолеты. Исторически самолеты были первыми средствами доставки ядерного оружия, и именно с помощью самолетов было выполнено единственное в истории боевое ядерное бомбометание: