Электрический заряд

Автор работы: Пользователь скрыл имя, 09 Октября 2013 в 11:34, реферат

Краткое описание

Весьма примечательным является факт, что электрические заряды всех относительно стабильных заряженных элементарных частиц равны друг другу по модулю. Это позволило ввести понятие элементарного заряда (е). До настоящего времени не обнаружено способных существовать обособленно элементарных частиц с зарядом, не кратным элементарному (имеются основания полагать, что сами элементарные частицы "составлены" из "субчастиц" - кварков, заряды которых кратны e/3, однако до сих пор свободные кварки в экспериментах не обнаружены). Величина заряда любого макроскопического тела определяется разностью составляющих его положительных и отрицательных частиц и, разумеется, кратна элементарному заряду. Говорят, что электрический заряд дискретен.

Содержание

Введение…………………………………………………………………………...3
1. Предыстория открытия. Открытие электрона……………………………...4-6
2. Электрический заряд…………………………………………………………7-8
3. Электрический заряд элементарной частицы ………………………………..9
4. Единица измерения электрического заряда .………………………………..10
5. Электрометр ……………………………………………………………… 11-12
6. Закон сохранения электрического заряда…………………………………...13
7. Электризация тела ………………………………………………………...14-17
Заключение…………………………………………………………………...18-19
Список литературы……………………………………

Вложенные файлы: 1 файл

Естествознание.doc

— 120.00 Кб (Скачать файл)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Электрический заряд элементарной частицы

 

Электрический заряд элементарной частицы – это не особый «механизм» в частице, который можно было бы снять с нее, разложить на составные части и снова собрать. Наличие электрического заряда у электрона и других частиц означает лишь существование определенных взаимодействий между ними.

В природе имеются  частицы с зарядами противоположных  знаков. Заряд протона называется положительным, а электрона –  отрицательным. Положительный знак заряда у частицы не означает, конечно, наличия у нее особых достоинств. Введение зарядов двух знаков просто выражает тот факт, что заряженные частицы могут как притягиваться, так и отталкиваться. При одинаковых знаках заряда частицы отталкиваются, а при разных – притягиваются.

Никакого объяснения причин существования двух видов  электрических зарядов сейчас нет. Во всяком случае, никаких принципиальных различий между положительными и отрицательными зарядами не обнаруживается. Если бы знаки электрических зарядов частиц изменились на противоположные, то характер электромагнитных взаимодействий в природе не изменился бы.

Положительные и отрицательные  заряды очень хорошо скомпенсированы  во Вселенной. И если Вселенная конечна, то ее полный электрический заряд, по всей вероятности, равен нулю.

Наиболее замечательным  является то, что электрический заряд всех элементарных частиц строго одинаков по модулю. Существует минимальный заряд, называемый элементарным, которым обладают все заряженные элементарные частицы. Заряд может быть положительным, как у протона, или отрицательным, как у электрона, но модуль заряда во всех случаях один и тот же.

Отделить часть заряда, например, у электрона невозможно. Это, пожалуй, самое удивительное. Никакая  современная теория не может объяснить, почему заряды всех частиц одинаковы, и не в состоянии вычислить  значение минимального электрического заряда. Оно определяется экспериментально с помощью различных опытов.

В 60-е гг., после того как число вновь открытых элементарных частиц стало угрожающе расти, была выдвинута гипотеза о том, что  все сильно взаимодействующие частицы являются составными. Более фундаментальные частицы были названы кварками. Поразительным оказалось то, что кварки должны иметь дробный электрический заряд: 1/3 и 2/3 элементарного заряда. Для построения протонов и нейтронов достаточно двух сортов кварков. А максимальное их число, по-видимому, не превышает шести.

4. Единица измерения электрического заряда

 

Создать макроскопический эталон единицы электрического заряда, подобный эталону длины – метру, невозможно из-за неизбежной утечки заряда. Естественно было бы за единицу принять заряд электрона (это сейчас и сделано в атомной физике). Но во времена Кулона еще не было известно о существовании в природе электрона. Кроме того, заряд электрона слишком мал, и поэтому его трудно использовать в качестве эталона.

В Международной системе единиц (СИ) единицу заряда – кулон устанавливают  с помощью единицы силы тока:

1 кулон (Кл) – это заряд, проходящий  за 1 с через поперечное сечение  проводника при силе тока в  1 А. 

Заряд в 1 Кл очень велик. Два таких заряда на расстоянии 1 км отталкивались бы друг от друга  с силой, чуть меньшей силы, с которой  земной шар притягивает груз массой в 1 т. Поэтому сообщить небольшому телу (размером порядка нескольких метров) заряд в 1 Кл невозможно. Отталкиваясь друг от друга, заряженные частицы не смогли бы удерживаться на таком теле. Никаких других сил, которые были бы способны в данных условиях компенсировать кулоновское отталкивание, в природе не существует. Но в проводнике, который в целом нейтрален, привести в движение заряд в 1 Кл не составляет большого труда. Ведь в обычной электрической лампочке мощностью 100 Вт при напряжении 127 В устанавливается ток, немного меньший 1 А. При этом за 1 с через поперечное сечение проводника проходит заряд, почти равный 1 Кл.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Электрометр

 

Для обнаружения и  измерения электрических зарядов  применяется электрометр. Электрометр  состоит из металлического стержня  и стрелки, которая может вращаться  вокруг горизонтальной оси (рис. 2). Стержень со стрелкой закреплен в плексигласовой втулке и помещен в металлический корпус цилиндрической формы, закрытый стеклянными крышками.

Принцип работы электрометра. Прикоснемся положительно заряженной палочкой к стержню электрометра. Мы увидим, что стрелка электрометра отклоняется на некоторый угол (см. рис. 2). Поворот стрелки объясняется тем, что при соприкосновении заряженного тела со стержнем электрометра электрические заряды распределяются по стрелке и стержню. Силы отталкивания, действующие между одноименными электрическими зарядами на стержне и стрелке, вызывают поворот стрелки. Наэлектризуем эбонитовую палочку еще раз и вновь коснемся ею стержня электрометра. Опыт, показывает, что при увеличении электрического заряда на стержне угол отклонения стрелки от вертикального положения увеличивается. Следовательно, по углу отклонения стрелки электрометра можно судить о значении электрического заряда, переданного стержню электрометра.

Рис. 2

Свойства электрического заряда

Совокупность всех известных  экспериментальных фактов позволяет  выделить следующие свойства заряда:

Существует два рода электрических зарядов, условно названных положительными и отрицательными. Положительно заряженными называют тела, которые действуют на другие заряженные тела так же, как стекло, наэлектризованное трением о шелк. Отрицательно заряженными называют тела, которые действуют так же, как эбонит, наэлектризованный трением о шерсть. Выбор названия «положительный» для зарядов, возникающих на стекле, и «отрицательный» для зарядов на эбоните совершенно случаен.

Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

Одноименные заряды отталкиваются, разноименные – притягиваются. В  этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Важным свойством электрического заряда является его дискретность. Это означает, что существует некоторый  наименьший, универсальный, далее не делимый элементарный заряд, так что заряд q любого тела является кратным этому элементарному заряду:

,

где N – целое число, е – величина элементарного заряда. Согласно современным представлениям, этот заряд численно равен заряду электрона e = 1,6∙10-19 Кл. Поскольку величина элементарного заряда весьма мала, то для большинства наблюдаемых и используемых на практике заряженных тел число N очень велико, и дискретный характер изменения заряда не проявляется. Поэтому считают, что в обычных условиях электрический заряд тел изменяется практически непрерывно.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Закон сохранения электрического заряда.

 

Внутри замкнутой системы  при любых взаимодействиях алгебраическая сумма электрических зарядов  остается постоянной:

.

Изолированной (или замкнутой) системой мы будем называть систему  тел, в которую не вводятся извне  и не выводятся из нее электрические  заряды.

Нигде и никогда в  природе не возникает и не исчезает электрический заряд одного знака. Появление положительного электрического заряда всегда сопровождается появлением равного по модулю отрицательного заряда. Ни положительный, ни отрицательный заряд не могут исчезнуть в отдельности, они могут лишь взаимно нейтрализовать друг друга, если равны по модулю.

Так элементарные частицы способны превращаться друг в друга. Но всегда при рождении заряженных частиц наблюдается появление пары частиц с зарядами противоположного знака. Может наблюдаться и одновременное рождение нескольких таких пар. Исчезают заряженные частицы, превращаясь в нейтральные, тоже только парами. Все эти факты не оставляют сомнений в строгом выполнении закона сохранения электрического заряда.

Причина сохранения электрического заряда до сих пор пока неизвестна.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Электризация тела

 

Макроскопические тела, как правило, электрически нейтральны. Нейтрален атом любого вещества, так как число электронов в нем равно числу протонов в ядре. Положительно и отрицательно заряженные частицы связаны друг с другом электрическими силами и образуют нейтральные системы.

Тело больших размеров заряжено в том случае, когда оно  содержит избыточное количество элементарных частиц с одним знаком заряда. Отрицательный  заряд тела обусловлен избытком электронов по сравнению с протонами, а положительный  заряд – их недостатком.

Для того чтобы получить электрически заряженное макроскопическое тело или, как говорят, наэлектризовать  его, нужно отделить часть отрицательного заряда от связанного с ним положительного.

Проще всего это сделать  с помощью трения. Если провести расческой по волосам, то небольшая часть наиболее подвижных заряженных частиц – электронов – перейдет с волос на расческу и зарядит ее отрицательно, а волосы зарядятся положительно. При электризации трением оба тела приобретают противоположные по знаку, но одинаковые по модулю заряды.

Наэлектризовать тела с  помощью трения очень просто. А  вот объяснить, как это происходит, оказалось очень непростой задачей.

1 версия. При электризации  тел важен тесный контакт между  ними. Электрические силы удерживают  электроны внутри тела. Но для разных веществ эти силы различны. При тесном контакте небольшая часть электронов того вещества, у которого связь электронов с телом относительно слаба, переходит на другое тело. Перемещения электронов при этом не превышают размеров межатомных расстояний (10-8 см). Но если тела разъединить, то оба они окажутся заряженными. Так как поверхности тел никогда не бывают идеально гладкими, то необходимый для перехода тесный контакт между телами устанавливается только на небольших участках поверхностей. При трении тел друг о друга число участков с тесным контактом увеличивается, и тем самым увеличивается общее число заряженных частиц, переходящих от одного тела к другому. Но не ясно, как в таких не проводящих ток веществах (изоляторах), как эбонит, плексиглас и другие, могут перемещаться электроны. Они ведь связаны в нейтральных молекулах.

2 версия. На примере  ионного кристалла LiF (изолятора)  это объяснение выглядит так.  При образовании кристалла возникают  различного рода дефекты, в  частности вакансии – незаполненные места в узлах кристаллической решетки. Если число вакансий для положительных ионов лития и отрицательных – фтора неодинаково, то кристалл окажется при образовании заряженным по объему. Но заряд в целом не может сохраняться у кристалла долго. В воздухе всегда имеется некоторое количество ионов, и кристалл будет их вытягивать из воздуха до тех пор, пока заряд кристалла не нейтрализуется слоем ионов на его поверхности. У разных изоляторов объемные заряды различны, и поэтому различны заряды поверхностных слоев ионов. При трении поверхностные слои ионов перемешиваются, и при разъединении изоляторов каждый из них оказывается заряженным.

А могут ли электризоваться  при трении два одинаковых изолятора, например те же кристаллы LiF? Если они имеют одинаковые собственные объемные заряды, то нет. Но они могут иметь и различные собственные заряды, если условия кристаллизации были разными и появилось разное число вакансий. Как показал опыт, электризация при трении одинаковых кристаллов рубина, янтаря и др. действительно может происходить. Однако приведенное объяснение вряд ли правильно во всех случаях. Если тела состоят, к примеру, из молекулярных кристаллов, то появление вакансий у них не должно приводить к заряжению тела.

Еще один способ электризации тел – воздействие на них различных излучений (в частности, ультрафиолетового, рентгеновского и γ-излучения). Этот способ наиболее эффективен для электризации металлов, когда под действием излучений с поверхности металла выбиваются электроны, и проводник приобретает положительный заряд.

Электризация через  влияние. Проводник заряжается не только при контакте с заряженным телом, но и в том случае, когда оно  находится на некотором расстоянии. Исследуем подробнее это явление. Подвесим на изолированном проводнике легкие листки бумаги (рис. 3). Если вначале проводник не заряжен, листки будут в неотклоненном положении. Приблизим теперь к проводнику изолированный металлический шар, сильно заряженный, например, при помощи стеклянной палочки. Мы увидим, что листки, подвешенные у концов тела, в точках а и b, отклоняются, хотя заряженное тело и не касается проводника. Проводник зарядился через влияние, отчего и само явление получило название «электризация через влияние» или «электрическая индукция». Заряды, полученные посредством электрической индукции, называют наведенными или индуцированными. Листки, подвешенные у середины тела, в точках а’ и b’, не отклоняются. Значит, индуцированные заряды возникают только на концах тела, а середина его остается нейтральной, или незаряженной. Поднося к листкам, подвешенным в точках а и b, наэлектризованную стеклянную палочку, легко убедиться, что листки в точке b от нее отталкиваются, а листки в точке а притягиваются. Это значит, что на удаленном конце проводника возникает заряд того же знака, что и на шаре, а на близлежащих частях возникают заряды другого знака. Удалив заряженный шар, мы увидим, что листки опустятся. Явление протекает совершенно аналогичным образом, если повторить опыт, зарядив шар отрицательно (например, при помощи сургуча).

Информация о работе Электрический заряд