ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ ВЕЩЕСТВ.

Автор работы: Пользователь скрыл имя, 25 Июня 2013 в 11:15, курсовая работа

Краткое описание

В настоящей работе будет рассмотрено такое важное свойство веществ как электрическая проводимость.
Каждое вещество обладает определенными свойствами. В настоящей работе рассмотрена одно из наиболее важных свойств вещества – электрическая проводимость. Это явление описывается большим числом физических законов.
Электрическая проводимость – это способность вещества проводить электрический ток1. В данной работе была рассмотрена ионная электрическая проводимость. Этот выбор связан с уникальным механизмом этой проводимости, которая свойственна как растворам и расплавам электролитов, так и удивительным веществам – ионным кристаллам.

Содержание

ВВЕДЕНИЕ………………………………………………………………………..3
ГЛАВАI. ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ ВЕЩЕСТВ. ЗАВИСИМОСТЬ ПРОВОДИМОСТИ МЕТАЛЛОВ ОТ ТЕМПЕРАТУРЫ. СВЕРХПРОВОДИМОСТЬ………………………………………………………4
Электрические свойства металлов при 20 °С……………………………7
1.2. Материалы с высокой проводимостью…………………………………...12
ГЛАВА II. Электрическая проводимость меди…………………………………………………13
ГЛАВА III. Электропроводность, теплопроводность, механические свойства и другие физические свойства Алюминия……………………………………..15
ГЛАВА IV. ЭЛЕКТРОПРОВОДНОСТЬ ЭЛЕКТРОЛИТОВ…………………18
ЗАКЛЮЧЕНИЕ………………………………………………………………….21
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ…………………………….22

Вложенные файлы: 1 файл

ВВЕДЕНИЕ.docx

— 92.94 Кб (Скачать файл)

         Биметаллический провод (стальной провод, покрытый медью) используют при передаче переменных токов повышенной частоты. Такая конструкция позволяет уменьшить электрические потери, связанные с ферромагнетизмом железа, и расход дефицитной меди. Проводимость определяет металл наружного слоя, так как токи повышенной частоты вследствие скин-эффекта распространяются по наружному слою провода. Сердцевина из стали воспринимает силовую нагрузку. Покрытие создается гальваническим способом или плакированием. Наружный медный слой предохраняет железо от атмосферной коррозии.

         Биметаллический провод используют в линиях связи и электропередачи. Кроме этого, из биметаллического материала изготовляют шины для распределительных устройств, различные токопроводящие части электрических аппаратов.

          Припои. Сплавы, используемые при пайке металлов высокой проводимости, - припои должны обеспечивать небольшое переходное сопротивление (сопротивление контакта).

         Различают припои двух типов: для низкотемпературной пайки, имеющие температуру плавления до 400 °С, и для высокотемпературной пайки с более высокой температурой плавления. Для получения хорошего соединения припой должен иметь более низкую температуру плавления, чем металл, подвергающийся пайке; в расплавленном состоянии припой должен хорошо смачивать поверхности. Температурные коэффициенты линейного расширения металла и припоя должны быть близки.

          Для этих целей используют припои на основе Sn, Pb, Zn, Ag, имеющих хорошую электрическую проводимость. Сплавы этих металлов образуют эвтектические смеси, электрическое сопротивление которых мало отличается от металлов, образующих сплав.

         В приборостроении для низкотемпературной пайки применяют оловянно-свинцовые и оловянно-цинковые (ГОСТ 21931 76) припои.

у 30 элементов и  около 1000 сплавов. Сверхпроводящие  свойства обнаруживают многие сплавы со структурой упорядоченных твердых  растворов и промежуточных фаз (о-фаза, фаза Лавеса и др.). При обычных  температурах эти

 

гдэ т,к

Рис. 17.7. Изменение  электрического сопротивления в  металлах (Л/) и сверхпроводниках (Л/св) в области низких температур вещества не обладают высокой проводимостью.

         Переход металла в сверхпроводящее состояние связывают с фазовым превращением. Новое фазовое состояние характеризуется тем, что свободные электроны перестают взаимодействовать с ионами кристаллической решетки, но вступают во взаимодействие между собой. В результате этого электроны с противоположно направленными спинами спариваются. Результирующий спиновый момент становится равным нулю, и сверхпроводник превращается в диамагнетик. Все электронные пары располагаются на низких энергетических уровнях, где они перестают испытывать тепловые рассеяния, так как энергия, которую пара может получить от взаимодействия с ионами решетки, слишком мала, чтобы вызвать это рассеяние.

        Сверхпроводящее состояние разрушается не только в результате нагрева, но также в сильных магнитных полях и при пропускании электрического тока большой силы (критические значения поля и тока).

        Способность сверхпроводников, являющихся диамагнетиками, выталкивать магнитное поле, используют в магнитных насосах, позволяющих генерировать магнитные поля колоссальной напряженности, а также в криогенных гироскопах.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Материалы с высокой проводимостью

 

 

 

          Материалы с высокой проводимостью. К материалам этого типа предъявляются следующие требования: минимальное значение удельного электрического сопротивления; достаточно высокие механические свойства (главным образом предел прочности при растяжении и относительное удлинение при разрыве); способность легко обрабатываться, что необходимо для изготовления проводов малых и средних сечений; способность образовывать контакты с малым переходным сопротивлением при пайке, сварке и других методах соединения проводов; коррозионная стойкость.

           Основным является требование максимальной удельной проводимости материала. Однако электропроводность металла может снижаться из-за загрязняющих примесей, деформации металла, возникающей при штамповке или волочении, что приводит к разрушению отдельных зерен металла. Влияние деформаций металла на ею электропроводность устраняется при отжиге, во время которого уменьшается число дефектов в металле и увеличиваются средние размеры кристаллов металла. В связи с этим проводниковые материалы используют в основном в отожженном (мягком) состоянии.

          Наиболее распространенными современными материалами высокой проводимости, применяемыми в радиоэлектронике, являются цветные металлы (медь, алюминий, цинк, олово, магний, свинец) и черные металлы (железо), которые применяются в чистом виде. Еще шире используют сплавы этих металлов, так как они обладают лучшими свойствами и более дешевы по сравнению с чистыми металлами. Однако цветные металлы и их сплавы экономически целесообразно использовать в тех случаях, когда необходимые свойства изделий нельзя получить, применяя черные металлы, чугун и сталь.

ГЛАВА II. Электрическая проводимость меди

 

 

 

          Электрическая проводимость меди зависит от содержания примесей. При наличии даже небольшого количества примесей электрическая проводимость резко падает. 

          Электрическая проводимость меди заметно не изменяется под влиянием висмута, свинца, серы, селена и теллура, сильно снижается под влиянием незначительных количеств мышьяка, а также сурьмы. 

         Оказывается, что проводимость плазмы много меньше проводимости меди. Поэтому стенки канала и приходится набирать из изолированных друг от друга медных шайб. 

          В зависимости от чистоты электрическая проводимость технического алюминия составляет 62 - 65 % от электрической проводимости меди, но алюминий легче меди в 3 раза и поэтому для изготовления проводников одинаковой электрической проводимости потребуется алюминия в 2 16 раза меньше, чем меди. 

          Проводниковую медь получают из слитков путем гальванической очистки в электролитических ваннах. Даже ничтожное количество примесей резко снижает электрическую проводимость меди. Почти все изделия из меди для электротехнической промышленности изготовляются путем проката, прессовки и волочения. Волочением получаются провода диаметром до 0 005 мм, ленты толщиной до 0 1 мм и фольга толщиной до 0 008 мм. При механических деформациях медь подвергается наклепу, который устраняется при термообработке. 

          Удельный вес никеля, наносимого гальваническим путем, равен 8 9; точка плавления 1455 С. Электрическая проводимость никеля составляет лишь 15 % электрической проводимости меди. При высокой температуре на никеле появляются цвета побежалости, однако в окисляющей атмосфере при температуре до 800 С никель не изменяет своих свойств. В щелочах и органических кислотах никель не растворяется, в серной и соляной кислотах он растворяется медленно, в азотной кислоте хорошо. Он очень пластичен, легко прокатывается в фольгу и протягивается в проволоку. Прекрасный проводник электрического тока - его электрическая проводимость сравнима с электрической проводимостью меди. 

          В виде чистого металла алюминий используется для изготовления химической аппаратуры, электрических проводов, конденсаторов. Хотя электрическая проводимость алюминия меньше, чем у меди ( около 60 % электрической проводимости меди), но это компенсируется легкостью алюминия, позволяющей делать провода более толстыми: при одинаковой электрической проводимости масса алюминиевого провода вдвое меньше медного. 

         Он очень пластичен, легко прокатывается в фольгу к протягивается в проволоку. Прекрасный проводник электрического тока - его электрическая проводимость сравнима с электрической проводимостью меди. 

         Кадмий сильно поглощает медленные нейтроны. Поэтому его используют в виде стержней в ядерных реакторах для регулирования скорости цепной реакции. Сплавы меди, содержащие - 1 % Cd, служат для изготовления проводов, подвергающихся трению от скольжения контактов; не снижая электрической проводимости меди, кадмий улучшает ее механические свойства. Кадмирование стальных изделий лучше, чем цинковое покрытие, предохраняет железо и сталь от ржавления. Из солей кадмия наибольшее применение имеет сульфид. Сульфид кадмия применяется для изготовления краски и цветных стекол. 

 

 

 

 

 

 

 

 

 

 

 

 

 

ГЛАВА III. Электропроводность, Теплопроводность, Механические свойства и     Другие физические свойства Алюминия.

 

 

 

 

   Электропроводность.

 

 

    Важнейшее свойство алюминия – высокая электропроводность, по которой он уступает только серебру, меди и золоту. Сочетание высокой электропроводности с малой плотностью позволяет алюминию конкурировать с  медью в сфере кабельно-проводниковой продукции.       

 На электропроводность алюминия кроме железа и кремния сильно влияет хром, марганец, титан. Поэтому в алюминии, предназначенном для изготовления проводников тока, регламентируется содержание ещё нескольких примесей. Так, в алюминии марки А5Е при допускаемом содержании железа 0.35%, а кремния  0.12%, сумма примесей Cr+V+Ti+Mn не должна превышать всего лишь 0.01%.     

   Электропроводность зависит от состояния материала. Длительный отжиг при 350 С улучшает проводимость, а нагартовка  проводимость ухудшает.     

     Величина удельного электрического сопротивления при температуре 20 С составляет  Ом*мм2/м или мкОм*м :

0.0277  –  отожженная проволока из алюминия марки А7Е

0.0280 –  отожженная проволока из алюминия марки А5Е

0.0290 – после прессования,  без термообработки из алюминия  марки АД0     

  Таким образом удельное электросопротивление проводников из алюминия примерно в 1.5 раза выше электросопротивления медных проводников. Соответственно электропроводность (величина обратная удельному сопротивлению)  алюминия составляет 60-65% от электропроводности меди. Электропроводность алюминия растет с уменьшением количества примесей.  

        Температурный коэффициент электросопротивления алюминия (0.004) приблизительно такой же, как у меди.       

 

 

 Теплопроводность      

 

          Теплопроводность алюминия при 20 С составляет примерно 0.50 кал/см*с*С и возрастает с увеличением чистоты металла. По теплопроводности алюминий уступает только серебру и меди (примерно 0.90), втрое превышая теплопроводность малоуглеродистой стали. Это свойство определяет применение алюминия в радиаторах охлаждения и теплообменниках. 

 

 

     

 

Другие физические свойства.   

 

 

        Алюминий имеет очень высокую удельную теплоемкость (примерно 0.22 кал/г*С). Это значительно больше, чем для большинства металлов (у меди – 0.09). Удельная теплота плавления также очень высока (примерно 93 кал/г). Для сравнения – у меди и железа эта величина составляет примерно 41-49 кал/г.    

      Отражательная способность алюминия сильно зависит от его чистоты. Для алюминиевой фольги чистотой 99.2% коэффициент отражения белого света равен 75%, а для фольги с содержанием алюминия 99.5% отражаемость составляет уже 84%  

 

 

 

 Механические свойства      

 

          Модуль упругости E = 7000-7100 кгс/ммдля технического алюминия при 20 С. При повышении чистоты алюминия его величина уменьшается (6700 для А99).      

Модуль сдвига G  = 2700 кгс/мм2.      

    Основные параметры механических свойств технического алюминия приведены ниже:

 

 

 

Параметр

Ед. изм.

Деформированный

Отожженный

Предел текучести σ0.2

кгс/мм2

8 - 12

4 - 8

Предел прочности при  растяжении σв

кгс/мм2

13 - 16

8

Относительное удлинение  при разрывеδ

%

5 – 10

30 – 40

Относительное сужение при  разрыве

%

50 - 60

70 - 90

Предел прочности при  срезе

кгс/мм2

10

6

Твердость

НВ

30 - 35

20


 

            

Приведенные показатели очень  ориентировочны:       

1) Для отожженного и  литого алюминия эти значения  зависят от марки технического  алюминия. Чем больше примесей, тем  больше прочность и твердость  и ниже пластичность. Например  твердость литого алюминия составляет: для А0 – 25НВ, для А5 –  20НВ, а для алюминия высокой  чистоты А995 – 15НВ. Предел прочности  при растяжении для этих случаев  составляет: 8,5; 7.5 и 5 кгс/мм2, а относительное удлинение 20; 30 и 45% соответственно.       

2) Для деформированного  алюминия механические свойства  зависят от степени деформации, вида проката и его размеров. Например предел прочности при  растяжении составляет не менее  15-16 кгс/мм2для проволоки и 8 – 11 кгс/ммдля труб. 

 

 

       Однако, в любом случае, технический алюминий это мягкий и непрочный металл. Низкий предел текучести (даже для нагартованного проката он не превышает 12 кгс/мм2) ограничивает применение алюминия по допустимым нагрузкам.          

Информация о работе ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ ВЕЩЕСТВ.