Физиология подготовка к экзамену

Автор работы: Пользователь скрыл имя, 02 Декабря 2013 в 11:45, реферат

Краткое описание

ФИЗИОЛОГИЯ - наука о жизнедеятельности организма как целого, его взаимодействии с внешней средой и динамике жизненных процессов.
В ходе своего развития физиология прошла несколько этапов:
эмпирический, анатомо-функциональный, функциональный. На каждом этапе в изучении физиологического процесса или явления имело место два направления (подхода) - аналитическое и системное.

Вложенные файлы: 1 файл

К_экзамену.doc

— 1.57 Мб (Скачать файл)

• понижающая трансформация, в основе которой, в основном, лежит явление суммации возбуждений (пространственной и временной), когда в ответ на несколько возбуждений, пришедших к нервной клетке, в последней возникает только одно возбуждение;

• повышающая трансформация, в ее основе лежат механизмы умножения (мультипликации), способные резко увеличить количество импульсов возбуждения (рис. 11).

Рис. 11. Схема умножения (мультипликации) возбуждения в центральной нервной

5. Рефлекторное последействие - заключается в том, что рефлекторная реакция заканчивается позже прекращения действия раздражителя. Это явление обусловлено двумя причинами:

• длительной следовой деполяризацией мембраны нейрона, на фоне которой могут  возникать несколько потенциалов  действия, обеспечивающих кратковременное рефлекторное последействие;

• пролонгированием выхода возбуждения к эффектору в результате циркуляции (реверберации) возбуждения в нейронной сети типа "нейронной ловушки" (рис. 12). Возбуждение, попадая в такую сеть, может длительное время циркулировать в ней, обеспечивая длительное рефлекторное последействие. Возбуждение в такой цепочке может циркулировать до тех пор, пока какое-либо внешнее воздействие затормозит этот процесс или в ней наступит утомление.

Рис. 12. Схема пролонгирования  возбуждения (нейронной ловушки) в  центральной нервной системе.

6. Нервные центры, как  и синапсы, обладают высокой  чувствительностью к недостатку  кислорода.

7. Нервные центры, как и синапсы, обладают высокой чувствительностью к действию различных химических веществ, особенно ядов. На одном нейроне могут располагаться синапсы, обладающие различной чувствительностью к различным химическим веществам.

Поэтому можно подобрать такие химические вещества, которые избирательно будут блокировать одни синапсы, оставляя другие в рабочем состоянии. Это делает возможным корректировать состояния и реакции как здорового, так и больного организма.

8. Нервные центры, как  и синапсы, обладают быстрой утомляемостью в отличие от нервных волокон, которые считаются практически неутомляемыми.

9. Нервные центры, как  и синапсы, обладают низкой  лабильностью.

10. В нервных центрах  легко возникает процесс торможения.

11. Нервные центры обладают тонусом, который выражается в том, что даже при отсутствии специальных раздражении, они постоянно посылают импульсы к рабочим органам.

12. Нервные центры, как и синапсы,  обладают низкой аккомодационной  способностью, т. е. они способны  реагировать на раздражающие факторы, медленно нарастающие по силе.

13. Нервные центры обладают пластичностью  - способностью изменять собственное  функциональное назначение и  расширять свои функциональные  возможности.

14. Посттетаническая потенциация  - явление усиления рефлекторного ответа после длительного ритмического раздражения нервного центра. Оно обусловлено сохранением определенного уровня ВПСП на нейронах центра, что облегчает проведение последующих возбуждений через синапсы.

Принципы, лежащие в основе координационной деятельности ЦНС.

1. Принцип доминанты был сформулирован А. А. Ухтомским как основной принцип работы нервных центров. Согласно этому принципу для деятельности нервной системы характерно наличие в ЦНС доминирующих (господствующих) в данный период времени очагов возбуждения, в нервных центрах, которые и определяют направленность и характер функций организма в этот период. Доминантный очаг возбуждения характеризуется следующими свойствами:

• повышенной возбудимостью;

• стойкостью возбуждения (инертностью), т. к. трудно подавить другим возбуждением;

• способностью к суммации субдоминантных возбуждений;

• способностью тормозить субдоминантные очаги возбуждения, в функционально  различных нервных центрах.

2. Принцип пространственного облегчения. Он проявляется в том, что суммарный ответ организма при одновременном действии двух относительно слабых раздражителей будет больше суммы ответов, полученных при их раздельном действии. Причина облегчения связана с тем, что аксон афферентного нейрона в ЦНС синаптирует с группой нервных клеток, в которой выделяют центральную (пороговую) зону и периферическую (подпороговую) "кайму". Нейроны, находящиеся в центральной зоне, получают от каждого афферентного нейрона достаточное количество синаптических окончаний (например, по 2) (рис. 13) , чтобы сформировать потенциал действия. Нейрон подпороговой зоны получает от тех же нейронов меньшее число окончаний (по 1), поэтому их афферентные импульсы будут недостаточны, чтобы вызвать в нейронах "каймы" генерацию потенциалов действия, а возникает лишь подпороговое возбуждение. Вследствие этого, при раздельном раздражении афферентных нейронов 1 и 2 возникают рефлекторные реакции, суммарная выраженность которых определяется только нейронами центральной зоны (3) . Но при одновременном раздражении афферентных нейронов потенциалы действия генерируются и нейронами подпороговой зоны. Поэтому выраженность такого суммарного рефлекторного ответа будет больше. Это явление получило название центрального облегчения. Оно чаще наблюдается при действии на организм слабых раздражителей.

Рис. 13. Схема явления облегчения (А) и окклюзии (Б). Кругами обозначены центральные зоны (сплошная линия) и  подпороговая "кайма" (пунктирная линия) популяции нейронов.

3. Принцип окклюзии. Этот принцип противоположен пространственному облегчению и он заключается в том, что два афферентных входа совместно возбуждают меньшую группу мотонейронов по сравнению с эффектами при раздельной их активации. Причина окклюзии состоит в том, что афферентные входы в силу конвергенции отчасти адресуются к одним и тем же мотонейронам, которые затормаживаются при активации обоих входов одновременно (рис. 13). Явление окклюзии проявляется в случаях применения сильных афферентных раздражении.

4. Принцип обратной связи. Процессы саморегуляции в организме аналогичны техническим, предполагающим автоматическую регуляцию процесса с использованием обратной связи. Наличие обратной связи позволяет соотнести выраженность изменений параметров системы с ее работой в целом. Связь выхода системы с ее входом с положительным коэффициентом усиления называется положительной обратной связью, а с отрицательным коэффициентом - отрицательной обратной связью. В биологических системах положительная обратная связь реализуется в основном в патологических ситуациях. Отрицательная обратная связь улучшает устойчивость системы, т. е. ее способность возвращаться к первоначальному состоянию после прекращения влияния возмущающих факторов.

Обратные связи можно подразделять по различным признакам. Например, по скорости действия - быстрая (нервная) и медленная (гуморальная) и т. д.

Можно привести множество примеров проявления эффектов обратной связи. Например, в нервной системе так осуществляется регулирование активности мотонейронов. Суть процесса заключается в том, что импульсы возбуждения, распространяющиеся по аксонам мотонейронов, достигают не только мышц, но и специализированных промежуточных нейронов (клеток Реншоу), возбуждение которых тормозит активность мотонейронов. Данный эффект известен как процесс возвратного торможения.

В качестве примера с положительной  обратной связью можно привести процесс  возникновения потенциала действия. Так при формировании восходящей части ПД деполяризация мембраны увеличивает ее натриевую проницаемость, которая, в свою очередь, увеличивая натриевый ток, увеличивает деполяризацию мембраны.

Велико значение механизмов обратной связи в поддержании гомеостаза. Так, например, поддержание константного уровня кровяного давления осуществляется за счет изменения импульсной активности барорецепторов сосудистых рефлексогенных зон, которые измененяют тонус вазомоторных симпатических нервов и таким образом нормализуют кровяное давление.

5. Принцип реципрокности (сочетанности, сопряженности, взаимоисключения). Он отражает характер отношений между центрами ответственными за осуществление противоположных функций (вдоха и выдоха, сгибание и разгибание конечности и т. д.). Например, активация проприорецепторов мышцы-сгибателя одновременно возбуждает мотонейроны мышцы-сгибателя и тормозит через вставочные тормозные нейроны мотонейроны мышцы-разгибателя (рис. 18). Реципрокное торможение играет важную роль в автоматической координации двигательных актов.

6. Принцип общего конечного пути. Эффекторные нейроны ЦНС (прежде всего мотонейроны спинного мозга), являясь конечными в цепочке состоящей из афферентных, промежуточных и эффекторных нейронов, могут вовлекаться в осуществление различных реакций организма возбуждениями, приходящими к ним от большого числа афферентных и промежуточных нейронов, для которых они являются конечным путем (путем от ЦНС к эффектору). Например, на мотонейронах передних рогов спинного мозга, иннервирующих мускулатуру конечности, оканчиваются волокна афферентных нейронов, нейронов пирамидного тракта и экстрапирамидной системы (ядер мозжечка, ретикулярной формации и многих других структур). Поэтому эти мотонейроны, обеспечивающие рефлекторную деятельность конечности, рассматриваются как конечный путь для общей реализации на конечность многих нервных влияний.

Процессы торможения в  центральной нервной системе.

В центральной нервной системе  постоянно функционируют два  основных, взаимосвязанных процесса - возбуждение и торможение.

Торможение - это активный биологический процесс, направленный на ослабление, прекращение или предотвращение возникновения процесса возбуждения. Явление центрального торможения, т. е. торможения в ЦНС, было открыто И. М. Сеченовым в 1862 г. в опыте, получившим название "опыт сеченовского торможения". Суть опыта: у лягушки на срез зрительных бугров накладывали кристаллик поваренной соли, что приводило к увеличению времени двигательных рефлексов, т. е. к их торможению. Время рефлекса - это время от начала раздражения до начала ответной реакции.

Торможение в ЦНС  выполняет две основные функции. Во-первых, оно координирует функции, т. е. оно направляет возбуждение  по определенным путям к определенным нервным центрам, при этом выключая те пути и нейроны, активность которых  в данный момент не нужна для получения конкретного приспособительного результата. Важность этой функции процесса торможения для функционирования организма можно наблюдать в эксперименте с введением животному стрихнина. Стрихнин блокирует тормозные синапсы в ЦНС (в основном глицинергические) и тем самым устраняет основу для формирования процесса торможения. В этих условиях раздражение животного вызывает некоординированную реакцию, в основе которой лежит диффузная (генерализованная) иррадиация возбуждения. При этом приспособителъная деятельность становится невозможной. Во-вторых, торможение выполняет охранительную или защитную функцию, пред охраняя нервные клетки от перевозбуждения и истощения при действии сверхсильных и длительных раздражителей.

Теории торможения. Н. Е. Введенским (1886) было показано, что очень частые раздражения нерва нервно-мышечного препарата вызывают сокращения мышцы в виде гладкого тетануса, амплитуда которого мала. Н. Е. Введенский полагал, что в нервно-мышечном препарате при частом раздражении возникает процесс пессимального торможения, т. е. торможение является как бы следствием перевозбуждения. Сейчас установлено, что его механизм заключается в длительной, застойной деполяризации мембраны, вызванной избытком медиатора (ацетилхолина), выделяющегося при частой стимуляции нерва. Мембрана полностью теряет возбудимость из-за инактивации натриевых каналов и не в состоянии ответить на приход новых возбуждений выделением новых порций медиатора. Таким образом, возбуждение переходит в противоположный процесс - торможение. Следовательно, возбуждение и торможение являются как бы одним и тем же процессом, возникают в одних и тех же структурах, с участием одного и того. же медиатора. Данная теория торможения называется унитарно-химической или монистической.

Медиаторы на постсинаптической мембране могут вызывать не только деполяризацию (ВПСП), но и гиперполяризацию (ТПСП). Эти медиаторы увеличивают проницаемость субсинаптической мембраны для ионов калия или хлора, в результате чего постсинаптическая мембрана гиперполяризуется и возникает ТПСП. Данная теория торможения получила название бинарно-химической, согласно которой торможение и возбуждение развиваются по разным механизмам, с участием тормозных и возбуждающих медиаторов соответственно.

Классификация центрального торможения. Торможение в ЦНС можно классифицировать по различным признакам:

• по электрическому состоянию мембраны - деполяризационное и гиперполяризационное;

• по отношению к синапсу - пресинаптическое и постсинаптическое;

• по нейрональной организации - поступательное, латеральное (боковое), возвратное, реципрокное.

Постсинаптическое торможение развивается  в условиях, когда медиатор, выделяемый нервным окончанием, изменяет свойства постсинаптической мембраны таким  образом, что способность нервной  клетки генерировать процессы возбуждения подавляется. Постсинаптическое торможение может быть деполяризационным, если в его основе лежит процесс длительной деполяризации, и гиперполяризационным, если - гиперполяризации.

Пресинаптическое торможение обусловлено наличием вставочных тормозных нейронов, которые формируют аксо-аксональные синапсы на афферентных терминалях, являющихся пресинаптическими по отношению, например, к мотонейрону. В любом случае активации тормозного интернейрона, он вызывает деполяризацию мембраны афферентных терминалей, ухудшающей условия проведения по ним ПД, что таким образом уменьшает количество выделяемого ими медиатора, и, следовательно, эффективность синаптической передачи возбуждения к мотонейрону, что уменьшает его активность (рис. 14). Медиатором в таких аксо-аксональных синапсах является, по-видимому, ГАМК, которая вызывает повышение проницаемости мембраны для ионов хлора, которые выходят из терминали и частично, но длительно ее деполяризуют.

Информация о работе Физиология подготовка к экзамену