Нанокапсулы и наножидкоти

Автор работы: Пользователь скрыл имя, 05 Июня 2012 в 11:35, доклад

Краткое описание

Нанокапсулы
нанокапсула (от англ. nanocapsule) — наночастица, состоящая из полимерной, липидной или другой оболочки, окружающей ее внутреннюю полость или содержимое.

Описание:
Обычно нанокапсула представляет собой сферическую полую частицу, оболочка которой образована полимерами или фосфолипидами (в этом случае она называется липосомой или наносомой), а внутри находится низкомолекулярное вещество. Оболочка нанокапсул может быть изготовлена также из других материалов, например, гидроксиапатита или силиката кальция, а также определенным образом организованных молекул ДНК. Нанокапсулы должны быть химически стабильны, биоактивны, биосовместимы с организмом, защищать капсулированное вещество от нежелательного воздействия, например, растворения в жидкостях. Размеры нанокапсул обычно не выходят за пределы 100 нм, а микрокапсул — 600 мкм. Нанокапсулы обладают высокой проникающей способностью и могут проходить даже в такие «закрытые» зоны организма, как головной мозг.

Вложенные файлы: 1 файл

доклад 2 в 1.pptx

— 243.57 Кб (Скачать файл)

Нанокапсулы

    • нанокапсула (от англ. nanocapsule) — наночастица, состоящая из полимерной, липидной или другой оболочки, окружающей ее внутреннюю полость или содержимое.

     Описание:

    • Обычно нанокапсула представляет собой сферическую полую частицу, оболочка которой образована полимерами или фосфолипидами (в этом случае она называется липосомой или наносомой), а внутри находится низкомолекулярное вещество. Оболочка нанокапсул может быть изготовлена также из других материалов, например, гидроксиапатита или силиката кальция, а также определенным образом организованных молекул ДНК. Нанокапсулы должны быть химически стабильны, биоактивны, биосовместимы с организмом, защищать капсулированное вещество от нежелательного воздействия, например, растворения в жидкостях. Размеры нанокапсул обычно не выходят за пределы 100 нм, а микрокапсул — 600 мкм. Нанокапсулы обладают высокой проникающей способностью и могут проходить даже в такие «закрытые» зоны организма, как головной мозг.

 

    • Нанокапсулы применяют для контролируемого введения инкапсулированных биологически активных веществ: лекарственных препаратов (в том числе нерастворимых в воде или нестабильных), пептидов и белков (имеющих функции гормонов и цитокинов), а также генетических конструкций, несущих гены ферментов, гормонов и цитокинов. Диапазон капсулированных веществ широк — от средств противоопухолевой терапии и морфогенетических белков костной ткани до средств косметологии. Для целевой доставки поверхность нанокапсул может быть модифицирована специфическими антигенами, рецепторами или лигандами. Липосомы являются одними из наиболее удобных нанокапсул. Мембрана липосом состоит из природных фосфолипидов, что определяет ее способность при определенных условиях поглощаться клетками. Мембрана липосом может сливаться с клеточной мембраной, что приводит к внутриклеточной доставке их содержимого. Перспективными также представляются подходы доставки нанокапсул внутри эритроцитов или бактерий.

 

 

 

 

 

 

 

 

 

 

 

    •  Технология включения лекарственных веществ в нанокапсулы позволяет использовать многие лекарственные соединения, доставка которых в органы и ткани была бы сильно затруднена из-за их нестабильности или нерастворимости в воде. В липосомах возможно капсулирование водных растворов лекарственных веществ, а полимерные нанокапсулы обычно используют для жирорастворимых соединений. Эта технология позволяет снизить токсичность и добиться желаемой фармакокинетики для лекарственных препаратов. В настоящее время разрабатываются подходы к транспорту в нанокапсулах наноструктур металлической и полупроводниковой природы, а также суперпарамагнитных наночастиц для селективного разрушения клеток при электромагнитном разогреве, что важно для лечения ряда опухолей.

Схема нанокапсулы, содержащей лекарственное средство  

Пористые нанокапсулы из гидрокcиапатита для доставки лекарств

 

    • Гидроксиапатит Ca10(PO4)6(OH)2 (ГАП) и силикат кальция CaSiO3 в последнее время вызывают огромный интерес в связи с их использованием в качестве биоматериалов. Они химически стабильны, биоактивны, биосовместимы и могут применяться для конструирования костной ткани и доставки лекарств. Наноструктурированые полые частицы на основе этих материалов могут быть нагружены различными веществами, например, противовоспалительными препаратами, коллагеном или костными морфогенетическими белками (BMP), которые будут способствовать исцелению костных повреждений.

 

 

 

Исследователи из Китая  смогли получить пористые капсулы ГАП  и CaSiO3. Для этого они использовали темплат из частиц CaCO3. Синтез выглядит следующим образом. Сначала были получены ядра из карбоната кальция путем реакции ацетата кальция Ca(CH3COO)2 и гидрокарбоната натрия NaHCO3 в смеси воды и этилен-гликоля при комнатной температуре. Далее полученные частицы карбоната обрабатывались раствором, содержащим либо ионы PO43−, либо SiO32−, что приводило к образованию оболочек из ГАП или силиката соответственно. В случае ГАП карбонат удалялся при воздействии разбавленной уксусной кислоты, а в случае силиката проводилась термообработка при 900°C, вследствие чего карбонат разлагался. В результате получились полые оболочки из ГАП или силиката кальция.

Микроструктура  полученных материалов приведена на рисунках 1 и 2. Частицы CaCO3 имеют вид эллипсов диаметром 400 нм и длиной 800 нм. Путем изменения условий синтеза можно варьировать размеры частиц. Оболочки из ГАП и силиката имеют примерно такие же размеры. Стенки оболочек образованы нанопластинками и имеют пористую структуру. Толщина стенок также может варьироваться. Площадь поверхности (BET) достигает 220 м2/г, что является очень большим значением для пористых материалов на основе ГАП.

Наножидкости

    • Нанодисперсия, наноэмульсия или наножидкость — это жидкость, содержащая частицы и агломераты частиц с характерным размером 0,1-100 нм. Такие жидкости представляют собой коллоидные растворы наночастиц в жидком растворителе. Вследствие малых размеров включений такие системы обладают особыми физикохимическими свойствами. На долю поверхности в них приходится до 50 % всего вещества. Обладают повышенной поверхностной энергией в связи с большим количеством атомов находящихся в возбуждённом состоянии и имеющем не менее одного свободного электрона на внешнем энергетическом уровне. Нанодисперсии имеют различную природу. В качестве диспергированных веществ могут выступать полиорганосилоксаны, металлические, оксидные, карбидные, нитридные наночастицы, углеродные нанотрубки и т.д. В качестве дисперсионной среды обычно используется вода или этиленгликоль.Содержание 

 

    • Применение:
    • Нанодисперсии являются удобными транспортными средствами для плохорастворимых амфифильных и липофильных веществ. Гидрофильные нанодисперсии обладают очень важным свойством: они очень быстро проникают в клетки. Нанодисперсии используются в составе косметических средств для придания уникальных сенсорных характеристик. Эволюция нефтегазовых нанодисперсий — кинетически контролируемый процесс, в котором промежуточные структуры отделены от равновесных состояний значительными кинетическими барьерами. При заключительной отделке текстильных материалов используют наночастицы различных веществ в виде наноэмульсий и нанодисперсий.

 

    • Нанодисперсии обладают новыми физическими свойствами, делающими их потенциально полезными в таких сферах как микроэлектроника, топливные элементы, фармацевтика, гибридные двигатели и т.д. В частности нанодисперсии обладают существенно увеличенной теплопроводностью и конвективным коэффициентом теплопередачи по сравнению с жидкостью-носителем. Установлено также, что применение сильноразбавленных нанодисперсий в качестве теплоносителя позволяет существенно увеличить плотность критического теплового потока в установках кипящего типа. Также интересны магнитные наножидкости, представляющие собой однодоменные магниты, равномерно распределенные в объеме дисперсной фазы.
    • Проблемы:
    • В виду своего строения и нестабильности размеров агрегатов наночастиц нанодисперсии, как правило, довольно нестабильны. Их свойства легко меняются и сильно зависят от внешнего воздействия. Основная задача, которая должна быть решена на пути их промышленного использования - получение устойчивых нанодисперсий с воспроизводимыми свойствами.

 

ВСЁ!


Информация о работе Нанокапсулы и наножидкоти