История магнита и магнитного компаса. Использование магнитов в древние времена

Автор работы: Пользователь скрыл имя, 24 Июня 2012 в 09:40, реферат

Краткое описание

Магнит – это объект, сделанный из определенного материала, который создает магнитное поле. Каждый магнит имеет, по крайней мере, один «северный» (N) и один «южный» (S) полюс. Ученые условились, что линии магнитного поля выходят из «северного» конца магнита и входят в «южный» конец магнита. Это пример магнитного диполя («ди»-означает два, диполь-два полюса).

Содержание

ВВЕДЕНИЕ.
1.История магнита и магнитного компаса. Использование магнитов в древние времена
2. История создания и использования электромагнитов
3. Естественные и искусственные магниты
4. Применение магнитов в разных сферах деятельности современного общества
5. Сверхпроводники и их применение

Вложенные файлы: 1 файл

!!!Магнетизм и магниты..doc

— 127.50 Кб (Скачать файл)

 

Техника сверхвысокочастотного диапазона   Сверхвысоко частотный диапазон (СВЧ) - частотный диапазон электромагнитного излучения (100 - 300 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области

Связь. Радиоволны СВЧ-диапазона широко применяются в технике связи. Кроме различных радиосистем военного назначения, во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи. Поскольку такие радиоволны не следуют за кривизной земной поверхности, а распространяются по прямой, эти линии связи, как правило, состоят из ретрансляционных станций, установленных на вершинах холмов или на радиобашнях с интервалами около 50 км.

Термообработка пищевых продуктов. СВЧ-излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности. Энергия, генерируемая мощными электронными лампами, может быть сконцентрирована в малом объеме для высокоэффективной тепловой обработки продуктов в т.н. микроволновых или СВЧ-печах, отличающихся чистотой, бесшумностью и компактностью. Такие устройства применяются на самолетных бортовых кухнях, в железнодорожных вагонах-ресторанах и торговых автоматах, где требуются быстрая подготовка продуктов и приготовление блюд. Промышленность выпускает также СВЧ-печи бытового назначения.

Быстрый прогресс в области СВЧ-техники в значительной мере связан с изобретением специальных электровакуумных приборов – магнетрона и клистрона, способных генерировать большие количества СВЧ-энергии. Генератор на обычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазоне оказывается весьма неэффективным.

Магнетрон. В магнетроне, изобретенном в Великобритании перед Второй мировой войной, эти недостатки отсутствуют, поскольку за основу взят совершенно иной подход к генерации СВЧ-излучения – принцип объемного резонатора. В магнетроне предусмотрено несколько объемных резонаторов, симметрично расположенных вокруг катода, находящегося в центре. Прибор помещают между полюсами сильного магнита.

Лампа бегущей волны (ЛБВ). Еще один электровакуумный прибор для генерации и усиления электромагнитных волн СВЧ-диапазона – лампа бегущей волны. Она представляет собой тонкую откачанную трубку, вставляемую в фокусирующую магнитную катушку.

Ускоритель частиц, установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию.

В современных ускорителях используются многочисленные и разнообразные виды техники, в т.ч.  мощные прецизионные магниты.

В медицинской терапии и диагностике ускорители играют важную практическую роль. Многие больничные учреждения во всем мире сегодня имеют в своем распоряжении небольшие электронные линейные ускорители, генерирующие интенсивное рентгеновское излучение, применяемое для терапии опухолей. В меньшей мере используются циклотроны или синхротроны, генерирующие протонные пучки. Преимущество протонов в терапии опухолей перед рентгеновским излучением состоит в более локализованном энерговыделении. Поэтому протонная терапия особенно эффективна при лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканей должно быть по возможности минимальным.

Представители различных наук учитывают магнитные поля в своих исследованиях. Физик измеряет магнитные поля атомов и элементарных частиц, астроном изучает роль космических полей в процессе формирования новых звёзд, геолог по  аномалиям магнитного поля Земли отыскивает залежи магнитных руд, с недавнего времени биология тоже активно включилась в изучение и использование магнитов.

Биологическая наука первой половины XX века уверенно описывала жизненные функции, вовсе не учитывая существования каких-либо магнитных полей. Более того, некоторые биологи считали нужным подчеркнуть, что даже сильное искусственное магнитное поле не оказывает никакого влияния на биологические объекты.

В энциклопедиях о влиянии магнитных полей на биологические процессы ничего не говорилось. В научной литературе всего мира ежегодно появлялись единичные позитивные соображения о том или ином биологическом эффекте магнитных полей. Однако этот слабый ручеёк не мог растопить айсберг недоверия даже к постановке самой проблемы… И вдруг ручеёк превратился в бурный поток. Лавина магнитобиологических публикаций, словно сорвавшись с какой – то вершины, с начала 60 – х годов непрестанно увеличивается и заглушает скептические высказывания.

От алхимиков XVI века и до наших дней биологическое действие магнита много раз находило поклонников и критиков. Неоднократно в течение нескольких веков наблюдались всплески и спады интереса к лечебному действию магнита. С его помощью пытались лечить (и не безуспешно) нервные болезни, зубную боль, бессонницу, боли в печени и в желудке – сотни болезней.

Для лечебных целей магнит стал употребляться, вероятно, раньше, чем для определения сторон света.

Как местное наружное средство и в качестве амулета магнит пользовался большим успехом у китайцев, индусов, египтян, арабов, греков, римлян и т.д. О его лечебных свойствах упоминают в своих трудах философ Аристотель и историк Плиний.

Во второй половине XX века широко распространились магнитные браслеты, благотворно влияющие на больных с нарушением кровяного давления (гипертония и гипотония).

Кроме постоянных магнитов используются и электромагниты. Их также применяют для широкого спектра проблем в науке, технике, электронике, медицине (нервные заболевания, заболевания сосудов конечностей, сердечно – сосудистые заболевания, раковые заболевания).

Более всего учёные склоняются к мысли, что магнитные поля повышают сопротивляемость организма.

Существуют электромагнитные измерители скорости движения крови, миниатюрные капсулы, которые с помощью внешних магнитных полей можно перемещать по кровеносным сосудам чтобы расширять их, брать пробы на определённых участках пути или, наоборот, локально выводить из капсул различные медикаменты.

Широко распространён магнитный метод удаления металлических частиц из глаза.

Большинству из нас известно исследование работы сердца с помощью электрических датчиков – электрокардиограмма. Электрические импульсы, вырабатываемые сердцем, создают магнитное поле сердца, которое в max значениях составляет 10-6 напряжённости магнитного поля Земли. Ценность магнитокардиографии в том, что она позволяет получить сведения об электрически “немых” областях сердца.

Надо отметить, что биологи сейчас просят физиков дать теорию первичного механизма биологического действия магнитного поля, а физики в ответ требуют от биологов побольше проверенных биологических фактов. Очевидно, что успешным будет тесное сотрудничество различных специалистов.

Важным звеном, объединяющим магнитобиологические проблемы, является реакция нервной системы на магнитные поля. Именно мозг первым реагирует на любые изменения во внешней среде. Именно изучение его реакций будет  ключом к решению многих задач магнитобиологии. Сердечно – сосудистая и кровеносная система

Во время магнитных бурь наблюдается ухудшение состояния больных, страдающих сердечно-сосудистыми заболеваниями, повышается артериальное давление, ухудтшается коронарное кровообращение. Магнитные бури вызывают в организме человека, страдающего заболеваниями сердечно-сосудистой системы, обострения (инфаркт миокарда, инсульт, гипертонический криз и т.д.). Сейчас, когда мы заранее узнаем время наступления магнитных бурь, то можем заранее предупредить эти обострения. Чтобы уберечь организм человека от ухудшения здоровья, нужно еще до наступления неблагоприятной погоды любыми способами укреплять здоровье. Это достигается не только медикаментозными средствами.

Органы дыхания

Магнитные бури оказывают неблагоприятное влияние на больных, страдающих заболеваниями органов дыхания. Под действием магнитных бурь изменяются биоритмы. Состояние одних больных ухудшается до магнитных бурь, а других - после. Приспосабливаемость таких больных к условиям магнитных бурь очень мала.

Центральная нервная система

Во время магнитных бурь наблюдается ухудшение состояния людей, страдающих психическими заболеваниями. Увеличивается число несчастных случаев и травматизма на транспорте. Центральная и вегетативная нервные системы очень чувствительны к геофизическим явлениям.

Другие заболевания

Чем дальше на Север, тем интенсивнее возмущенность магнитного поля во время магнитных бурь. А также, сильнее влияние на состояние здоровья людей в период магнитных бурь. Возрастает число преждевременных родов, токсикозов, в этот период наибольшая заболеваемость раком, обострение глазных болезней.

Главное правило для того, чтобы сохранить здоровье состоит в том, чтобы повышать резервные возможности организма. Для того чтобы не реагировать на метеоусловия, необходимо постоянно укреплять здоровье, для чего пользоваться не только медикаментозными средствами, но заниматься физкультурой, правильно организовать режим работы и отдыха, питание.

Жидкий магнит

Идея размолоть железо в такой мелкий порошок, который бы не осаждался в жидкости - воде, керосине, масле... Тогда получилась бы магнитная жидкость. Осуществить это удалось только в 60-х годах. После целой недели размалывания в шаровой мельнице добились такого тонкого помола порошка феррита, что, будучи засыпанным в смесь керосина и олеиновой кислоты, он уже не осаждался.

Это был первый жидкий магнит - тяжелая черно-бурая жидкость. Если к сосуду с такой жидкостью поднести магнит, она в буквальном смысле лезет на стенку или вздувается бугром. Разлитую на полу, ее можно собрать магнитом. Правда, лучше для этого брать электромагнит. Его выключил - и жидкость стекла в подставленную емкость. А вот постоянным магнитом жидко магнитную субстанцию лучше не собирать: потом от магнита ее нипочем не отскребешь.

Для чего? Например, из подводной лодки торчит вал с винтом. Встает проблема с уплотнением, чтобы забортная вода не проникала в машинное отделение. Вместо сальников можно использовать жидко магнитное уплотнение, чуть намагнитив вал в месте его выхода из корпуса лодки.

Магнитную жидкость на основе масла используют в качестве вечной смазки для намагниченных подшипников. Она оттуда уже не вылезет. Наоборот, захочешь - не вынешь.

Можно построить герметичный насос для перекачки агрессивных или ядовитых жидкостей. Вместо поршня в трубке будет ходить туда-сюда жидкомагнитная «пробка». Внешний магнит двигает ее, «пробка» толкает в трубке перекачиваемую жидкость.

Вот еще. Затонул нефтеналивной танкер. На море образовалась нефтяная пленка. Как ее собрать? Распылить небольшое количество магнитной жидкости, она растворится в нефти, а затем нефть собрать мощными электромагнитами.

Электромагнетизм

Открытие электромагнетизма

В XVIII в. электричество и магнетизм считались хотя и похожими, но все же имеющими различную природу явлениями. Правда, были известны некоторые факты, указывающие на существование как будто бы связи между магнетизмом и электричеством, например намагничение железных предметов в результате ударов молнии. Больше того, Франклину удалось как будто бы намагнитить кусок железа с помощью разряда лейденской банки. Все-таки известные факты не позволяли уверенно утверждать, что между электрическими и магнитными явлениями существует связь.

Такую связь впервые обнаружил датский физик Ханс Кристиан Эрстед (1777 - 1851) в 1820 г. Он открыл действие электрического тока на магнитную стрелку.

Интересна история этого открытия. Идею о связи между электрическими и магнитными явлениями Эрстед высказал еще в первом десятилетии XIX в. Он полагал, что в явлениях природы, несмотря на все их многообразие, имеется единство, что все они связаны между собой. Руководствуясь этой идеей, он поставил перед собой задачу выяснить на опыте, в чем эта связь проявляется.

Эрстед открыл, что если над проводником, направленным вдоль земного меридиана, поместить магнитную стрелку, которая показывает на север, и по проводнику пропустить электрический ток, то стрелка отклоняется на некоторый угол.

После того как Эрстед опубликовал свое открытие, многие физики занялись исследованием этого нового явления. Французские ученые Био и Савар постарались установить закон действия тока на магнитную стрелку, т. е. определить, как и от чего зависит сила, действующая на магнитную стрелку, когда она помещена около электрического тока. Они установили, что сила, действующая на магнитный полюс (на конец длинного магнита) со стороны прямолинейного проводника с током, направлена перпендикулярно к кратчайшему расстоянию от полюса до проводника и модуль ее обратно пропорционален этому расстоянию.

Познакомившись с работой Био и Савара, Лаплас заметил, что для расчета «магнитной» силы, т.е., говоря современным языком, напряженности магнитного поля, полезно рассматривать действие очень малых отрезков проводника с током на магнитный полюс. Из измерений Био и Савара следовало, что если ввести понятие элемента проводника ∆l, то сила ∆F, действующая со стороны этого элемента на полюс магнита, будет пропорциональна ∆F ~ (∆l/r2)sinθ -, где ∆l - элемент проводника, θ - угол, образованный этим элементом и прямой, проведенной из элемента ∆l в точку, в которой определяется сила, а r - кратчайшее расстояние от магнитного полюса до линии, являющейся продолжением элемента проводника.


После того как было введено понятие силы тока и напряженности магнитного поля, этот закон стали записывать так:

Информация о работе История магнита и магнитного компаса. Использование магнитов в древние времена