Исследование основных свойств и характеристик высокоэффективных импульсных блоков питания

Автор работы: Пользователь скрыл имя, 02 Апреля 2013 в 17:29, курсовая работа

Краткое описание

В настоящее время импульсные источники вторичного электропитания (ИВЭ) получили широкое распространение. Они занимают практически 90% мирового рынка всех изготавливаемых ИВЭ.

Содержание

Введение ……………………………………………………………………...3-5
Теоретическая часть
Проблемы развития источников вторичного электропитания ……...5-20
Основные технические характеристики …………………………….20-26
Конструкция блока питания персонального компьютера ………….26-28
Структурная схема импульсного блока питания …………………...28-34
Широтно-импульсный преобразователь ……………………………34-59
Импульсный усилитель мощности ………………………………….59-75
Вторичные цепи источника питания ………………………………...75-84
Физические основы работы диодов Шоттки ………………………..84-94
Практическая часть
1.Объекты и методы исследования …………………………………….94
2. Основные сведения из теории ………………………………………...94-95
3. Расчетная часть ……………………………………………………….96-100
Заключение ……………………………………………………………….100-105
Литература

Вложенные файлы: 1 файл

Kursovaya_po_fizike_Aynulin_R_R.doc

— 1,002.50 Кб (Скачать файл)

Варианты начального запуска каскадов ШИМ преобразователя  не ограничиваются схемами, использующими особую конструкцию согласующего трансформатора для этих целей. Существуют схемы, в которых применяется дополнительный маломощный трансформатор. Фрагмент одной из таких схем представлен ниже.

 

 

Рис.17. Схема запуска  ШИМ преобразователя с дополнительным трансформатором

 

Дополнительный трансформатор  Т1 —это малогабаритный трансформатор, рассчитанный на работу в первичной  сети переменного тока с частотой 50 Гц. К его вторичной обмотке  подключен двухполупериодный выпрямитель  на диодах D5 - D8. Напряжение с выхода выпрямителя фильтруется конденсатором С4 и подается на среднюю точку согласующего трансформатора ТЗ, вывод питания микросхемы ШИМ преобразователя TL494/12. Отрицательный полюс выпрямителя на диодах D5 - D8 соединен с общим проводом вторичной цепи. При включении питания сетевое напряжение выпрямляется и подается на силовой каскад, в конструкции которого не предусмотрено никаких элементов, обеспечивающих формирование импульса для начальной запитки ШИМ микросхемы. Структура базовых цепей усилителя мощности является типичной для каскадов, работа которых регулируется только внешними сигналами. То есть каскад функционирует исключительно в режиме внешнего возбуждения. Сигналы управления усилителем поступают через согласующей трансформатор ТЗ от ШИМ преобразователя. Начальное питание на ШИМ микросхему и весь каскад промежуточного усилителя поступает от выпрямителя на D5 - D8. Это напряжение появляется на элементах каскада ШИМ преобразователя также после подключения блока питания к сети. После запуска преобразователя на вторичной обмотке силового импульсного трансформатора Т2 появляется переменное импульсное напряжение, которое выпрямляется диодами D9, D10 и фильтруется конденсатором С7. Параметры трансформатора Т1 выбраны так, что напряжение на выходе выпрямителя на диодах D9 и D10 превышает потенциал, установившийся на выходе выпрямителя на диодах D5 - D8. Выходы выпрямителей на D5 - D8 и D9, D10 соединены между собой через диод D13. Анод D13 подключен к катодам диодов D9 и D10. Напряжение от выпрямителя вторичного канала +12В подается в цепь питания микросхемы ШИМ преобразователя и промежуточного усилительного каскада. Так как напряжение на выходе выпрямителя вторичного канала +12В выше положительного потенциала в точке соединения диодов D7 и D8, то диоды D5 - D8 получают обратное смешение и исключаются из работы в схеме. В дальнейшем электропитание поступает на все элементы ШИМ преобразователя от вторичной обмотки трансформатора Т2. Трансформатор Т1 используется только для начальной подачи напряжения питания на узел ШИМ. Выйдя в рабочий режим, импульсный преобразователь блокирует работу трансформатора начального запуска. Этим достигается некоторое преимущество в увеличении общего КПД преобразователя. Данная схема может быть модифицирована в части подключения выпрямителя напряжения +12 В к цепи питания промежуточного усилителя. Если из схемы исключить диод D13, то напряжение на узел ШИМ будет поступать только от трансформатора Т1. Обитая логика работы схемы останется практически без изменений. В течение всего рабочего цикла преобразователя выпрямленное напряжение от D9, D10 будет поступать только на цепи фильтрации выходного напряжения +12В. Никакого влияния на электропитание узла ШИМ силовой каскад оказывать не будет.

Силовые каскады с  дополнительной вторичной обмоткой согласующего трансформатора обязательно содержат резисторы для подачи положительного смещения в базовые цепи усилительных транзисторов. Смещение может быть подано одним резистором, включенным между базой и коллектором транзистора, или с помощью делителя, как это сделано, например, на Фрагменте схемы подачи смещения на базы силовых транзисторов. Нижний по схеме резистор делителя может подключаться непосредственно к базовому выводу транзистора или через резистор с типовым номиналом 2,2 Ом. Такая конструкция применяется только в схемах, где начальное питание на ШИМ преобразователь подается после генерации импульса каскадом импульсного усилителя мощности.

В базовых цепях силовых  транзисторов по схеме, приведенной  на Принципиальной схеме импульсного блока питания, установлены резисторы R27 и R29, которые подают положительное смещение на базы Q5 и Q6. Наличие этих резисторов позволяет запустить процесс, который приводит к генерации импульса начального питания ШИМ каскада. Электролитические конденсаторы С13 и С14 используют в качестве форсирующих при открывании и закрывании транзисторов Q5 и Q6.

Каждый вариант схемотехнического  исполнения базовых цепей предполагает наличие токозадающих резисторов, включенных между вторичными обмотками согласующего трансформатора и базовыми выводами силовых транзисторов. Позиционные обозначения элементов всех вариантов одинаковы. Резисторы рассчитаны на равную для всех максимальную мощность, которая составляет 0,25 Вт. Номиналы резисторов R1 и R2 могут иметь значения от 2,2 до 4,7 Ом. Естественно, что такой диапазон определяется наличием разных фирм-производителей источников. В конкретном изделии элементы каждой из базовой цепи должны быть полностью идентичны. Коммутация силовых транзисторов в этих схемах производится сигналами внешнего задающего генератора, питание на который поступает от отдельного маломощного источника. В этом случае нет необходимости формировать импульсы начального запуска схемы с помощью дополнительной обмотки в согласующем трансформаторе. В конструкции согласующего трансформатора применяются только сигнальные обмотки. Резисторы, подающие положительное смещение от первичного источника в базовые цепи силовых транзисторов, здесь также отсутствуют. Конфигурации первичных обмоток согласующего трансформатора определяются структурой транзисторных цепей выходного каскада промежуточного усилителя. Их возможные варианты приведены ниже.

 

 

Рис.18. Фрагмент схемы  промежуточного усилителя (Вариант 1)

 

 

Рис.19. Фрагмент схемы  промежуточного усилителя ( вариант 2)

 

Рис.20. Фрагмент схемы  промежуточного усилителя (Вариант  3)

 

Ниже базовые цепи транзисторов содержат только резистивные  элементы. Скорость открывания силовых  транзисторов определяется лишь динамическими  свойствами самих транзисторов. Здесь  никаких специальных мер для ускорения процессов коммутации силовых элементов не предусмотрено. В схеме, приведенной ниже, параллельно резисторам R1 и R2 подключено по конденсатору. Конденсаторы могут быть как керамическими, так и электролитическими. Конденсаторы используются как элементы, ускоряющее открывание силовых транзисторов в момент появления фронта положительного импульса.

 

Рис. 21. Схемы базовых  цепей каскадов с внешним возбуждением

В начальный момент времени  пока конденсатор не перезарядился, через него протекает максимальный ток. Переход транзисторов в насыщение происходит с увеличенной скоростью по сравнению со схемами, выполненными без конденсатора. Фронт импульса, формируемого силовым транзистором, получается крутым. Динамические потери при включении транзистора снижаются, и улучшается тепловой режим его работы. По мере заряда конденсатора протекание тока через него снижается, основной же ток поступает в базу через резисторы, включенные между вторичной обмоткой согласующего трансформатора и базой транзистора. Когда на вторичной обмотке возникает спад открывающего импульса, то оказывается, что к базе транзистора приложены запирающие напряжения заряженного конденсатора и обмотки. Происходит быстрое закрывание транзистора, благодаря ускоренному рассасыванию избыточных положительных зарядов, накопленных в базе. На схеме базовых цепей каскадов с внешним возбуждением (в) представлен еще один вариант ускорения коммутации силовых транзисторов. Вместо конденсаторов для этой цели применены ускоряющее диоды D1 и D2. Используемые диоды должны обладать хорошими скоростными характеристиками для работы с импульсными сигналами. Время восстановления их обратного сопротивления должно составлять несколько наносекунд. В течении действия открывающегося импульса на базе каждого из транзисторов диоды имеют обратное смещение, поэтому они не проводят ток и не оказывают эффективного влияния на процесс открывания транзисторов. Наличие диодов сказывается, когда на вторичных обмотках появляются спады положительных импульсов и транзисторы начинают закрываться. Резкий спад импульса приводит к быстрому открыванию диода, который в проводящем состоянии имеет сопротивление меньшее, чем резистор, параллельно которому он включен. Происходит резкое изменение направления течения тока. Скорость нарастания тока, вытекающего из базы, увеличивается очень быстро. Также быстро транзистор закрывается, избыточные носители в базе рассасываются лавинообразно. Переход транзистора в закрытое состояние протекает с большой скоростью, длительность фронта или спада получается минимальной. В этом случае так же, как и в предыдущем, благодаря введению дополнительных элементов, ускоряющих коммутацию силовых транзисторов, снижаются динамические потери во время переходных процессов при переключении транзисторов.

Общим для всех вариантов каскадов усилителей мощности импульсных преобразователей является способ включения силового трансформатора. Первичная обмотка трансформатора Т4 по схеме импульсного блока питания, включена в диагональ моста силового каскада. Подключение произведено через разделительный конденсатор С15, устраняющей возможность подмагничивания сердечника трансформатора Т4 постоянным током. Параллельно первичной обмотке Т4 подсоединена RC цепь на элементах С16 и R32. Снижая общую добротность резонансного контура, в состав которого входит первичная обмотка Т4, эти элементы способствуют понижению уровня выбросов и паразитных колебаний, возникающих в моменты; переключения силовых транзисторов Q5 и Q6.

Режим работы силовых  транзисторов пропорционально зависит  от величины нагрузки, подключенной к выходам вторичных цепей источника питания. По мере увеличения нагрузки возрастает импульсный ток, протекающий через транзисторы Q5 и Q6. Также возрастает время нахождения каждого из этих транзисторов в активном состоянии. Для наблюдения формы импульсного напряжения, формируемого транзисторным преобразователем, выберем, точку соединения первичной обмотки трансформатора Т4 и конденсатора С15. Если измерения производить с помощью осциллографа относительно эмиттера Q8. то форма напряжения в выбранной контрольной точке будет соответствовать диаграммам, представленным ниже. Изменение вида диаграммы напряжения будет происходить по мере возрастания суммарной нагрузки по всем вторичным каналам напряжений. Повышение нагрузки будет сопровождаться увеличением импульсного тока через транзисторы Q5 и Q6, снижением длительности паузы между импульсами положительной и отрицательной полярностей, а также появлением отчетливых очертаний этих импульсов. При правильной работе схемы управления и усилителя мощности импульсы имеют одинаковую длительность. Полный размах импульсного сигнала равен величине выпрямленного сетевого напряжения, то есть —310В. Амплитуда импульсов составляет половину этого значения. Пауза между импульсами фиксируется также на уровне, соответствующем половине напряжения питания силового каскада.

 

Рис. 22. Принципиальная схема вторичной цепи (вариант 1)

 

 

Вторичные цепи источника питания

 

Выпрямленное, отфильтрованное  и стабилизированное напряжение подается в нагрузку с выхода вторичных цепей источника питания. В импульсных источниках для ПЭВМ класса ХТ/АТ во вторичной цепи формируются четыре номинала постоянных напряжений и особый служебный сигнал «питание в норме». Оригинальное наименование этого сигнала -POWERGOOD или сокращенно PG. Вторичные каналы обладают различной токовой нагрузочной способностью. Самая большая нагрузка падает на вторичный канал напряжения +5 В. Максимально возможный ток по этому каналу зависит от общей габаритной мощности источника питания.

Силовой трансформатор Т4 источника, выполненного по принципиальной схеме импульсного блока питания, имеет две вторичные обмотки. Каждая полная вторичная обмотка состоит из двух полуобмоток. Точка их соединения подключена к общему проводу вторичной цепи питания, одна вторичная обмотка используется для получения напряжений +5 и -5 В, вторая является источником напряжения для каналов +12 и-12 В.

 

 

Рис. 23. Принципиальная схема импульсного блока питания

 

Вторичные обмотки силового трансформатора Т4 нагружены на двухполупериодные диодные выпрямители. Импульсные источники питания компьютеров всех модификаций во вторичных цепях используют двухполупериодные выпрямительные схемы. Такое решение обеспечивает симметричное распределение нагрузки обоих транзисторов усилителя мощности. Работа транзисторов в идентичных режимах исключает развитие неконтролируемых процессов, возникающих вследствие разбаланса нагрузки с постепенным разрушением структуры сначала одного транзистора, а затем и другого. Каждый выпрямитель выполнен по однотипной схеме на основе пары диодов, соединенных с выводами вторичных обмоток. Диоды выпрямительных схем с положительными выходными напряжениями подключены к обмоткам своими анодами, а диоды выпрямительных схем для каналов с отрицательными уровнями напряжений к выводам обмоток катодными выводами. Двухполупериодные схемы выпрямления на своем выходе формируют импульсные последовательности, в которых частота импульсов равна удвоенной частоте коммутации каждого из силовых транзисторов Q5 и Q8. Такой метод построения выпрямителя облегчает задачу фильтрации вторичных напряжений, а также способствует более равномерной подаче энергии в цепи нагрузки. Схема фильтрации импульсного напряжения каждого канала в данном варианте исполнения источника питания содержит только пассивные индуктивные и емкостные элементы. Обмотки дросселя L1 намотаны на общем магнитопроводе. Этим обеспечивается магнитная связь электромагнитных потоков, вызываемых токами, протекающими по каждой цепи вторичных напряжений. Обмотка дросселя L1 в цепи фильтрации напряжения +5 В является единственным индуктивным элементом в данном канале. В остальных цепях вторичных каналов напряжений включено по отдельному дополнительному дросселю. Канал +5 В также содержит наибольшее число электролитических конденсаторов. установленных на выходе этой цепи. Резисторы R39 - R41. подключенные по выходам каждого вторичного канала, обеспечивают возможность работы импульсного преобразователя без обязательного подключения внешней нагрузки. Резисторы создают контур разряда выходных фильтрующих конденсаторов, исключая возрастание выходных напряжений до амплитудных уровней импульсов, поступающих от выпрямительных элементов. Максимальное рабочее напряжение конденсаторов, установленных в фильтрах вторичных каналов, не превышает 25В. Амплитуда импульсов может быть выше этого предельного уровня. В отсутствие резисторов может происходить заряд выходных конденсаторов до уровня, превышающего предельный, что в итоге приведет к их повреждению. Номиналы балансных резисторов, устанавливаемых параллельно выходным фильтрующем конденсаторам, выбираются так, чтобы обеспечивать нагрузочный ток по каналу на уровне -50 мА. Там же рассмотрен принцип групповой стабилизации выходных вторичных напряжений с помощью дросселей, выполненных на едином магнитопроводе. В данном разделе в основном будут рассмотрены реализованные на практике вторичные цепи импульсных источников питания.

Информация о работе Исследование основных свойств и характеристик высокоэффективных импульсных блоков питания