Ионизирующее излучение. Природа ионизирующего излучения

Автор работы: Пользователь скрыл имя, 02 Декабря 2015 в 15:20, курсовая работа

Краткое описание

Ионизи́рующее излуче́ние — в самом общем смысле — поток микрочастиц, способных ионизировать вещество. В более узком смысле к ионизирующему излучению не относят ультрафиолетовое излучение и излучение видимого диапазона света, которое в отдельных случаях также может быть ионизирующим. Инфракрасное излучение, излучение сантиметрового и радиодиапазонов не является ионизирующим, поскольку его энергии недостаточно для ионизации атомов и молекул в основном состоянии.

Содержание

1.Введение: Ионизирующее излучение. Природа ионизирующего излучения
2. Источники ионизирующего излучения
2.1. Наведённая радиоактивность
2.2. Цепочка ядерных превращений
3. Измерение ионизирующих излучений
3.1. Способы и приборы измерения
3.2. Единицы измерения
4. Физические свойства ионизирующих излучений
4.1. Воздействие на конструкционные материалы
4.2. Воздействие на полупроводники
5. Химическое действие ионизирующего излучения
6. Биологическое действие ионизирующих излучений
6.1. Единицы измерения
6.2. Механизмы биологического воздействия
7. Применение ионизирующих излучений
7.1 В технике
7.2 В медицине
7.3 В аналитической химии
7.4. В нанотехнологиях
8.Заключение
9.Литература

Вложенные файлы: 1 файл

Готово - копия.doc

— 101.00 Кб (Скачать файл)

Также широко применяется устаревающее понятие экспозиционная доза излучения — величина, показывающая, какой заряд создаёт фотонное (гамма- или рентгеновское) излучение в единице объёма воздуха. Для этого обычно используют внесистемную единицу экспозиционной дозы рентген (Р, англ. roentgen, R): доза фотонного излучения, образующего ионы с зарядом в 1 ед. заряда СГСЭ ((1/3)·10−9 кулон) в 1 см³ воздуха. В системе СИ используется единица кулон на килограмм (Кл/кг, англ. C/kg): 1 Кл/кг = 3876 Р; 1 Р = 2,57976·10−4 Кл/кг.[10]

Активность радиоактивного источника ионизирующего излучения определяется как среднее количество распадов ядер в единицу времени. Соответствующая единица в системе СИ беккерель (Бк, англ. Becquerel, Bq) обозначает количество распадов в секунду. Применяется также внесистемная единица кюри (Ки, англ. Ci). 1 Ки = 3,7·1010 Бк. Первоначальное определение этой единицы соответствовало активности 1 г радия-226.

Корпускулярное ионизирующее излучение также характеризуется кинетической энергией частиц. Для измерения этого параметра наиболее распространена внесистемная единица электронвольт (эВ). Как правило радиоактивный источник генерирует частицы с определенным спектром энергий. Датчики излучений также имеют неравномерную чувствительность по энергии частиц.

 

4. Физические свойства ионизирующих  излучений

По механизму взаимодействия с веществом выделяют непосредственно потоки заряженных частиц и косвенно ионизирующее излучение (потоки нейтральных элементарных частиц — фотонов и нейтронов). По механизму образования — первичное (рождённое в источнике) и вторичное (образованное в результате взаимодействия излучения другого типа с веществом) ионизирующее излучение.

Энергия частиц ионизирующего излучения лежит в диапазоне от нескольких сотен электронвольт (рентгеновское излучение, бета-излучение некоторых радионуклидов) до 1015 — 1020 и выше электронвольт (протоны космического излучения, для которых не обнаружено верхнего предела по энергии).

Длина пробега и проникающая способность сильно различаются — от микрометров в конденсированной среде (альфа-излучение радионуклидов, осколки деления) до многих километров (высокоэнергетические мюоны космических лучей).

4.1. Воздействие  на конструкционные материалы

Длительное воздействие корпускулярных излучений или фотонных излучений сверхвысоких энергий может существенно изменять свойства конструкционных материалов. Изучением этих изменений занимается инженерная дисциплина радиационное материаловедение. Раздел физики, занимающийся исследованием поведения твердых тел под облучением, получил название радиационная физика твердого тела. Наиболее значимыми типами радиационных повреждений является:а)разрушение кристаллической решетки вследствие выбивания атомов из узлов;б)ионизация диэлектриков;в)Изменение химического состава веществ вследствие ядерных реакций.

Учет радиационных повреждений инженерных конструкций наиболее актуален для ядерных реакторов и полупроводниковой электроники, рассчитанной на работу в условиях радиации.

4.2. Воздействие  на полупроводники

Современные полупроводниковые технологии чувствительны к ионизирующей радиации. Тем не менее они широко применяются в военной и космической технике, в ядерной индустрии. При этом используется ряд технологических, схемотехнических и программных решений, уменьшающих последствия радиационного воздействия.

Основные типы радиационных повреждений, приводящих к разовым или необратимым отказам полупроводников:а)Накопление электрического заряда в подзатворных диэлектриках вследствие ионизации. Приводит к смещению порога открывания полевых транзисторов и долговременному отказу. Уменьшение топологических норм увеличивает стойкость к такого типа повреждениям.б)Стекание заряда в EEPROM и Flash памяти вследствие ионизации диэлектрика «кармана». Приводит к потере данных. Борются резервированием, избыточным кодированием и использованием других видов памяти.в)Фотоэффект на p-n переходах (аналогично солнечным батареям). Увеличивает паразитные утечки и ложные сигналы. Для борьбы с этим явлением используются специальные технологии, например изоляция компонентов диэлектриком.г)Космические тяжелые заряженные частицы (ТЗЧ) высоких энергий, ионизируя атомы, рождают в полупроводнике лавину электронов. Это может приводить к изменению состояния цифровых схем и мощным помехам в аналоговых схемах. В худшем случае к пробою изоляторов или тиристорному защелкиванию приборов с изоляцией p-n переходом. С последним борются изоляцией диэлектриком; изоляцией двумя p-n переходами (triple-well процесс); контролем тока потребления узлов с перезапуском по аварийному росту потребления.д)Разрушение кристаллической структуры и изменение химического состава полупроводниковых приборов.

5. Химическое действие ионизирующего  излучения

Ионизирующее излучение может вызывать химические превращения вещества. Такие превращения изучает радиационная химия. Под действием ионизирующего излучения происходят следующие превращения:а)Превращение молекул кислорода в молекулы озона, из-за чего металлы быстро окисляются.б)Разложение воды на кислород и водород с образованием некоторого количества перекиси водорода.в)Превращение аллотропических модификаций в более устойчивые: белого фосфора в красный, белого олова в серое, алмаза в графит.г)Разложение на простые вещества газов — углекислого газа, сернистого газа, сероводорода, хлороводорода, аммиака.д)Полимеризация соединений, содержащих двойные и тройные связи.

6. Биологическое действие ионизирующих излучений

Разные типы ионизирующего излучения обладают разным разрушительным эффектом и разным способом воздействия на биологические ткани. Соответственно, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятие относительной биологической эффективности излучения, которая измеряется с помощью коэффициента качества. Для рентгеновского, гамма- и бета-излучений коэффициент качества принят за 1. Для альфа-излучения и осколков ядер коэффициент качества 10…20. Нейтроны — 3…20 в зависимости от энергии. Для заряженных частиц биологическая эффективность прямо связана с линейной передачей энергии данного типа частиц (средняя потеря энергии частицей на единицу длины пробега частицы в ткани).

6.1. Единицы  измерения

Для учёта биологического эффекта поглощённой дозы была введена эквивалентная поглощённая доза ионизирующего излучения, численно равная произведению поглощённой дозы на коэффициент биологической эффективности. В системе СИ эффективная и эквивалентная поглощенная доза измеряется в зивертах (Зв, англ. sievert, Sv).

Ранее широко применялась единица измерения эквивалентной дозы бэр (Биологический Эквивалент Рентгена для гамма-излучения, англ. rem). Эквивалентная доза 1 бэр соответствует облучению гамма-квантами с поглощённой дозой 1 рентген. Эквивалентная поглощённая доза приводится к поглощённой дозе гамма-излучения, поскольку массовые измерительные приборы регистрируют в основном именно гамма-излучение, и такая величина наиболее соответствует возможностям измерений. Для рентгеновского и гамма-излучений 1 бэр = 0,01 Зв, соответственно принимают, что 1 рентген = 0,01 Зв.

Помимо биологической эффективности, необходимо учитывать проникающую способность излучений. Например, тяжёлые ядра атомов и альфа-частицы имеют крайне малую длину пробега в сколько-нибудь плотном веществе, поэтому радиоактивные альфа-источники опасны при попадании внутрь организма. Наоборот, гамма-излучение обладает значительной проникающей способностью.

Некоторые радиоактивные изотопы способны встраиваться в процесс обмена веществ живого организма, замещая неактивные элементы. Это приводит к удержанию и накоплению радиоактивного вещества непосредственно в живых тканях, что существенно увеличивает опасность контакта. Например, широко известны йод-131, изотопы стронция, плутония и т.п.. Для характеристики этого явления используется понятие период полувыведения изотопа из организма.

6.2. Механизмы  биологического воздействия

Первичное действие ионизирующих излучений — это прямое попадание в биологические молекулярные структуры клеток и в жидкие (водные) среды организма. Вторичное действие — действие свободных радикалов, возникающих в результате ионизации, создаваемой излучением в жидких средах организма и клеток. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки.

После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1—2 Зв на всё тело.

В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации).

Основным источником информации о стохастических эффектах воздействия ионизирующего излучения являются данные наблюдений за здоровьем людей, переживших атомные бомбардировки или радиационные аварии. Специалисты наблюдали 87 500 человек, переживших атомные бомбардировки. Средняя доза их облучения составила 240 миллизиверт. При этом прирост онкологических заболеваний за последующие годы составил 9 %. При дозах менее 100 миллизиверт отличий между ожидаемой и наблюдаемой в реальности заболеваемостью никто в мире не установил.

7. Применение ионизирующих излучений

Ионизирующие излучения применяются в различных отраслях:

7.1 В технике

а)Интроскопия (в том числе для досмотра багажа и людей в аэропортах).б)Стерилизация медицинских инструментов, расходных материалов и продуктов питания.в)«Вечные» люминесцентные источники света широко использовались в середине 20-го века в циферблатах приборов, подсветке специального оборудования, елочных игрушках, рыболовецких поплавках и т. п..в)Датчики пожара (задымления).г)Датчики и счетчики предметов на принципе перекрытия предметом узкого гамма- или рентгеновского луча.д)Некоторые виды изотопных генераторов электроэнергии.е)Ионизация воздуха (например, для борьбы с пылью в прецизионной оптике или облегчения пробоя в автомобильных свечах зажигания).

7.2 В медицине

а)Для получения картины внутренних органов и скелета используют рентгенография, рентгеноскопия, компьютерная томография.б)Для лечения опухолей и других патологических очагов используют лучевую терапию: облучение гамма-квантами, рентгеном, электронами, тяжёлыми ядерными частицами, такими как протоны, тяжёлые ионы, отрицательные π-мезоны и нейтроны разных энергий.в)Введение в организм радиофармацевтических препаратов, как с лечебными, так и с диагностическими целями.

7.3 В аналитической  химии

а)Радиоактивационный анализ путем бомбардировки нейтронами и анализа характера и спектра наведенной радиоактивности.б)Анализ веществ с использованием спектров поглощения, испускания или рассеяния гамма- и рентгеновских лучей. См. рентгеноспектральный анализ, рентгенофлуоресцентный анализ.в)Анализ веществ с использованием обратного рассеяния бета-частиц.

7.4. В нанотехнологиях

Ионно-трековая технология

 

8.Заключение

 

В заключение хочу сказать, что в своем реферате я попытался рассказать о том, что такое ионизирующие излучение, о его  видах, физических и химических свойствах , какими способами и какими приборами измеряется ионизирующие излучения, как оно воздействует на окружающий мир и на людей в том числе и в каких отраслях науки и промышленности используется.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.Литература

1. http://www.eti.su

2. http://gochs.info/p50.htm

3. http://ru.wikipedia.org/

4. ГОСТ 27451-87  СРЕДСТВА ИЗМЕРЕНИЙ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

5. Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

6. Иванов В. И., Курс дозиметрии, 2 изд., М., 1970.

 

 

 

 

 

 

 

 

 

 


Информация о работе Ионизирующее излучение. Природа ионизирующего излучения