Графен - материал с исключительными электронными свойствами

Автор работы: Пользователь скрыл имя, 14 Мая 2015 в 15:58, курсовая работа

Краткое описание

Графен сегодня можно назвать «чудо материалом», поскольку это - слой углерода толщиной в один атом, похожий по структуре на соты, обладающий множеством необычных свойств, часто уникальных и превосходящих свойства других материалов. На сегодняшний день это самый тонкий и самый прочный из материалов, известных человечеству. Предполагается, что в ближайшие годы он начнёт играть большую роль, особенно в наноэлектронике.

Вложенные файлы: 1 файл

Volkov_EKT-26.docx

— 111.94 Кб (Скачать файл)

«Национальный исследовательский университет МИЭТ»

 

 

 

Курсовая работа

по дисциплине

«Квантовая теория и статистическая физика»

Графен - материал с исключительными электронными свойствами.

 

 

 

 

 

Выполнил:

Студент группы ЭКТ-26

Волков Илья Вадимович

Проверил:

Шершулин Владимир Андреевич

 

 

 

 

Москва, 2015

  1. Введение.

      Графен  сегодня можно назвать «чудо материалом», поскольку  это - слой углерода толщиной в один атом, похожий по структуре на соты, обладающий множеством необычных свойств, часто уникальных и превосходящих свойства других материалов. На сегодняшний день это самый тонкий и самый прочный из материалов, известных человечеству. Предполагается, что в ближайшие годы он начнёт играть большую роль, особенно в наноэлектронике.

2. История открытия.

       Графен является двумерным кристаллом, состоящим из одиночного слоя атомов углерода, собранных в гексагональную решётку (рис.1). Его теоретическое исследование началось задолго до получения реальных образцов материала, поскольку из графена можно собрать трёхмерный кристалл графита. Андрей Гейм и Константин Новосёлов – первые учёные, которым удалось получить графен. Способ, который они использовали, теперь широко применяется во всех лабораториях: с помощью обычного скотча от графита отщепляют достаточно тонкие слои, часть из которых оказывается одноатомными, удивительно, но такой слой возможно увидеть с помощью светового микроскопа. Сегодня разработан ряд других способов получения графена, например, термическое разложение подложки слоя кремния, при котором графен формируется на поверхности этой плёнки.

Рис. 1. Структура графена

 

   3.Получение.

Кусочки графена получают при механическом воздействии на высокоориентированный пиролитический графит или киш-графит[1]. Сначала плоские куски графита помещают между липкими лентами (скотч) и расщепляют раз за разом, создавая достаточно тонкие слои (среди многих плёнок могут попадаться однослойные и двуслойные, которые и представляют интерес). После отшелушивания скотч с тонкими плёнками графита прижимают к подложке окисленного кремния. При этом трудно получить плёнку определённого размера и формы в фиксированных частях подложки (горизонтальные размеры плёнок составляют обычно около 10 мкм). Найденные с помощью оптического микроскопа, (они слабо видны при толщине диэлектрика 300 нм) плёнки подготавливают для измерений. Толщину можно определить с помощью атомно-силового микроскопа (она может варьироваться в пределах 1 нм для графена) или, используя комбинационное рассеяние. Используя стандартную электронную литографию иреактивное плазменное травление, задают форму плёнки для электрофизических измерений.

         Кусочки графена также можно приготовить из графита, используя химические методы. Сначала микрокристаллы графита подвергаются действию смеси серной и соляной кислот. Графит окисляется и на краях образца появляются карбоксильные группы графена. Их превращают в хлориды при помощи тионилхлорида. Затем под действием октадециламина в растворах тетрагидрофурана, тетрахлорметана и дихлорэтана они переходят в графеновые слои толщиной 0,54 нм. Этот химический метод не единственный, и, меняя органические растворители и химикаты, можно получить нанометровые слои графита.

В статьях описан ещё один химический метод получения графена, встроенного в полимерную матрицу. Следует упомянуть ещё два метода: радиочастотное плазмохимическое осаждение из газовой фазы (англ. PECVD), рост при высоком давлении и температуре (англ. HPHT) . Из этих методов только последний можно использовать для получения плёнок большой площади.

Если кристалл пиролитического графита и подложку поместить между электродами, то, можно добиться того, что кусочки графита с поверхности, среди которых могут оказаться плёнки атомарной толщины, под действием электрического поля могут перемещаться на подложку окисленного кремния. Для предотвращения пробоя (между электродами прикладывали напряжение от 1 до 13 кВ) между электродами также помещали тонкую пластину слюды.

Существует также несколько сообщений, посвящённых получению графена, выращенного на подложках карбида кремния SiC(0001). Графитовая плёнка формируется при термическом разложении поверхности подложки SiC (этот метод получения графена гораздо ближе к промышленному производству), причём качество выращенной плёнки зависит от того, какая стабилизация у кристалла: C- стабилизированная или Si- стабилизированная поверхность — в первом случае качество плёнок выше. В работах та же группа исследователей показала, что, несмотря на то, что толщина слоя графита составляет больше одного монослоя, в проводимости участвует только один слой в непосредственной близости от подложки, поскольку на границе SiC- C из-за разности работ выхода двух материалов образуется нескомпенсированный заряд. Свойства такой плёнки оказались эквивалентны свойствам графена.

4. Теория.

 

а) Кристаллическая структура

Кристаллическая решётка графена представляет собой плоскость, состоящую из шестиугольных ячеек, то есть является двумерной гексагональной кристаллической решёткой. Для такой решётки известно, что её обратная решётка тоже будет гексагональной. В элементарной ячейке кристалла находятся два атома, обозначенные A и B. Каждый из этих атомов при сдвиге на вектора трансляций (любой вектор вида где m и n — любые целые числа) образует подрешётку из эквивалентных ему атомов, то есть свойства кристалла независимы от точек наблюдения, расположенных в эквивалентных узлах кристалла. На рисунке 3 представлены две подрешётки атомов, закрашенные разными цветами: зелёным и красным.

Расстояние между ближайшими атомами углерода в шестиугольниках, обозначенное a0, составляет 0,142 нм. Постоянную решётки (a) можно получить из простых геометрических соображений. Она равна , то есть 0,246 нм. Если определить за начало координат точку, соответствующую узлу кристаллической решётки (подрешётка A), из которой начинаются векторы трансляций:  с длиной векторов, равной a, и ввести двумернуюдекартову систему координат в плоскости графена с осью ординат, направленной вверх, и осью абсцисс, направленной по отрезку, соединяющему соседние узлы A и B, то тогда координаты концов векторов трансляций, начинающихся из начала координат, запишутся в виде:

                                                              (1)

а соответствующие им вектора обратной решётки:

                                                                (2)             

(без множителя). В декартовых координатах положение ближайших к узлу подрешётки A (все атомы которой на рисунке 3 показаны красным) в начале координат, атомов из подрешётки B (показаны соответственно зелёным цветом) задаётся в виде:

                                                       (3)       

 

б) Зонная структура

 

Кристаллическая структура материала находит отражение во всех его физических свойствах. В особенности сильно от порядка, в котором расположены атомы в кристаллической решётке, зависит зонная структура кристалла.

Зонная структура графена рассчитана в приближении сильно связанных электронов. На внешней оболочке атома углерода находится 4 электрона, три из которых образуют связи с соседними атомами в решётки при перекрывании spІ-гибридизированных орбиталей, а оставшийся электрон находится в 2pz-состоянии (именно это состояние отвечает в графите за образование межплоскостных связей, а в графене — за образование энергетических зон). В приближении сильно связанных электронов полная волновая функция всех электронов кристалла записывается в виде суммы волновых функций электронов из разных подрешёток:

                                                                                        (4)                                         

где коэффициент — некий неизвестный (вариационный) параметр, который определяется из минимума энергии. Входящие в уравнение волновые функции φ1 и φ2 записываются в виде суммы волновых функций отдельных электронов в различных подрешётках кристалла

                                                                  (5)

                                                                 (6)                               

Здесь  и  — радиус-векторы, направленные на узлы кристаллической решётки, а  и   — волновые функции электронов, локализованных вблизи этих узлов.

В приближении сильно связанных электронов интеграл перекрытия (γ0), то есть сила взаимодействия, быстро спадает на межатомных расстояниях. Другими словами — взаимодействие волновой функции центрального атома с волновыми функциями атомов, расположенных на зелёной окружности (см. Рис. 4), вносит основной вклад в формирование зонной структуры графена.

Энергетический спектр электронов в графене имеет вид (здесь учтены только ближайшие соседи, координаты которых задаются по формуле (3)

 

                 (7)

где знак « » соответствует электронам, а « » — дыркам.

в) Линейный закон дисперсии

 

Из уравнения (7) следует, что вблизи точек соприкосновения валентной зоны и зоны проводимости (K и K') закон дисперсии для носителей (электронов) в графене представляется в виде:

                                                                                               (8)

Где  — скорость Ферми (экспериментальное значение =106 м/с) , — модуль волнового вектора в двумерном пространстве с компонентами  отсчитанного от K или K ' точек Дирака, — постоянная Планка. Здесь следует отметить, что такого рода спектром обладает фотон, поэтому говорят, что квазичастицы (электроны и дырки, энергия для которых выражается формулой ) в графене обладают нулевой эффективной массой. Скорость Ферми играет роль «эффективной» скорости света. Так как электроны и дырки — фермионы, то они должны описываться уравнением Дирака, но с нулевой массой частиц и античастиц (аналогично уравнениям для безмассовых нейтрино). Кроме того, так как графен — двухдолинный полуметалл, то уравнение Дирака должно быть модифицировано для учёта электронов и дырок из разных долин (K, K'). В итоге мы получим восемь дифференциальных уравнений первого порядка, которые включают такие характеристики носителей, как принадлежность к определённой подрешётке (A, B) кристалла, нахождение в долине (K, K') и проекцию спина. Решения этих уравнений описывают частицы с положительной энергией (электроны) и античастицы с отрицательной энергией (дырки). Обычно спин электрона не принимают во внимание (когда отсутствуют сильные магнитные поля) и гамильтониан уравнения Дирака записывается в виде:

            (9)

где  — вектор-строка, состоящая из матриц Паули.

Линейный закон дисперсии приводит к линейной зависимости плотности состояний от энергии, в отличие от обычных двумерных систем с параболическим законом дисперсии, где плотность состояний не зависит от энергии. Плотность состояний в графене задаётся стандартным способом:

                             (10)                 

где выражение под интегралом и есть искомая плотность состояний (на единицу площади):

                                                                                (11)

Где и — спиновое и долинное вырождение соответственно, а модуль энергии появляется, чтобы описать электроны и дырки одной формулой. Отсюда видно, что при нулевой энергии плотность состояний равна нулю, то есть отсутствуют носители (при нулевой температуре).

Концентрация электронов задаётся интегралом по энергии

                                                                                   (12)

Где — уровень Ферми. Если температура мала по сравнению с уровнем Ферми, то можно ограничиться случаем вырожденного электронного газа

                                                             (13)

Концентрацией носителей управляют с помощью затворного напряжения. Они связаны простым соотношением (при толщине диэлектрика 300 нм).

Здесь также следует обратить внимание на тот факт, что появление линейного закона дисперсии при рассмотрении гексагональной решётки не является уникальной особенностью для данного типа кристаллической структуры, а может появляться и при существенном искажении решётки вплоть до квадратной решётки.

г) Эффективная масса

Благодаря линейному закону дисперсии эффективная масса электронов и дырок в графене равна нулю. Но в магнитном поле возникает другая масса, связанная с движением электрона по замкнутым орбитам и называемая циклотронной массой. Связь между циклотронной массой и энергетическим спектром для носителей в графене получается из следующего рассмотрения. Энергия уровней Ландау для уравнения Дирака задаётся в виде

                                                                                     (14)

где « » соответствует спиновому расщеплению. Плотность состояний в графене осциллирует как функция обратного магнитного поля, и её частота равна

                                                                                                (15)

Где = — площадь орбиты в пространстве волновых векторов на уровне Ферми. Осциллирующий характер плотности состояний приводит к осцилляциям магнетосопротивления, что эквивалентно эффекту Шубникова — де Гааза в обычных двумерных системах. Исследуя температурную зависимость амплитуды осцилляций, находят циклотронную массу носителей.

Из периода осцилляций также можно определить концентрацию носителей

                                                                                                    (16) 

Если принять во внимание линейный закон дисперсии для носителей в графене (8), то зависимость эффективной массы от концентрации задаётся формулой

Информация о работе Графен - материал с исключительными электронными свойствами