Технология производства сахара из сахарной свеклы

Автор работы: Пользователь скрыл имя, 11 Мая 2013 в 11:26, реферат

Краткое описание

Производство сахара-песка на свеклосахарных заводах осуществляется по типовым технологическим схемам или по схемам, к ним приближающимся.Типовые технологические схемы разрабатываются на основе современных достижений науки и техники при условии получения вырабатываемого продукта высокого качества.Для выполнения отдельных операций в технологической схеме применяется типовое технологическое оборудование.

Вложенные файлы: 1 файл

Технология производства сахара из сахарной свеклы.docx

— 59.90 Кб (Скачать файл)

Преимущество типовой  схемы перед схемой очистки диффузионного  сока с горячей оптимальной преддефекацией состоит в том, что холодная (теплая) прогрессивная преддефекация (ППД) с противоточным движением извести и сока позволяет полнее осадить вещества коллоидной дисперсности, не разлагая их в щелочной среде, и получить плотный и устойчивый к пептизации коагулят.

При возврате сгущенной суспензии  сока II сатурации (вместо нефильтрованного сока или сгущенной суспензии сока I сатурации) в несколько раз уменьшается рециркуляция больших масс сока, что положительно влияет на его термоустойчивость и качество.

В процессе холодной основной дефекации (ОД) в соке растворяется в 3-4 раза больше извести, чем при горячей. Позднее, когда сок нагревается, и проводится горячая дефекация, большая часть растворенной извести в осадок не выпадает, а осаждается в пересыщенном состоянии, что обеспечивает более глубокое разложение несахаров. Для этой же цели предназначена и дополнительная дефекация перед II сатурацией. Кроме разложения несахаров, введение извести перед II сатурацией дает возможность повысить эффективность адсорбционной очистки сока карбонатом кальция.

Все основные мероприятия, позволяющие  добиться максимально возможного выхода сахара необходимого качества при переработке  свеклы пониженного качества, заложены в типовой схеме.

К дополнительным радикальным  мероприятиям по повышению качества и выхода сахара можно отнести  отделение преддефекованного осадка, замену сока I сатурации при возврате на преддефекацию (ПД) сгущенной суспензии.

В качестве экстремальной  меры можно использовать проведение "мгновенной" дефекации, т.е. осуществление  дефекосатурации при пониженном значении pH. В этом случае, чтобы устранить пенение диффузионного сока в предсатураторе, его предварительно нагревают до (55-60)оС, смешивают с суспензией сока II или I сатурации до pH2o 8.5-9.0 и подают в сборник рециркулятор внешнего рециркуляционного контура предсатуратора.

При переработке свеклы порченой с наличием корнеплодов, пораженных слизистым бактериозом, для улучшения  фильтрования рекомендуется применять  раствор активированного полиакриламида.

Целью преддефекации является максимальное осаждение веществ коллоидной дисперсности и ВМС и образование осадка, структура которого была бы достаточно устойчивой к разрушающему воздействию ионов Са в условиях высокой щелочности и температуры на ОД. ППД позволяет при постоянном добавлении извести добиться постепенного нарастания щелочности (Щ), при этом достигаются благоприятные условия для коагуляции не только pH 11.0, но и более низких его значениях, что дает возможность заметно ускорить фильтрование сока I сатурации, т.е. позволяет выполнить цепь процесса ПД. Добавление сгущенной суспензии осадка сока I сатурации в зону со значением pH<10 дает возможность получить осадок с лучшими фильтрационными свойствами, т.к. выпадающие в осадок частицы коагулята будут ионы Ca2+ связываться частицами возврата, содержащими CaCO3, в более жесткие агрегаты. Здесь происходят реакции коагуляции и осаждения. Ион Ca2+ с анионами щавелевой, лимонной, винной, оксилимонной, фосфорной и в слабой степени серной кислоты образует соли Са, нерастворимые в воде. Осаждение происходит постепенно в интервале pH2o 9.0-11.5 вместе с агрегатами высокомолекулярных соединений, но полностью они выпадают в осадок лишь на сатурации после снижения щелочности в результате адсорбции анионов карбонатом Ca2+ и осаждения Ca2+ в виде CaCO3. Также идут реакции коагуляции и осаждения высокополимеров. Коагулируют белки, сапонины, красящие вещества.

Комбинированная холодно  или тепло-горячая ОД позволяет  повышать растворимость извести  в дефекованном соке, обеспечивать термоустойчивость продуктов и одновременно снижать их цветность.

На основной холодно-горячей  дефекации идут реакции: разложение амидов кислот и солей аммония, дающих с известью растворимые соли Ca; разложение редуцирующих веществ (РВ); при этом образуются 2 группы кислот:

1) дающие с ионами Са2+ осадки;

2) дающие с ионами Са2+ растворимые соли, часть из которых окрашена;

разложение пектиновых веществ (ПВ). Полностью провести реакцию  разложения на основной дефекации нельзя, но стремиться к этому нужно, т.к. незаконченные реакции разложения приводят к разложению инвертного сахара, при этом снижается рH и повышается цветность (ЦВ); падению Щ на выпарке; усилению пенообразования. На ОД подается избыток извести, большая растворимость извести в соке на холодной ступени дает возможность, сатурируя перенасыщенный известью горячий сок получать на I сатурации сок с мелкими однородными кристаллами CaCO3, обладающей повышенной фильтрационной и _ адсорбционной способностью.

Цель первой сатурации - очистка  сока методом адсорбции и получение  осадка CaCO3 с хорошими фильтрационными  свойствами. Происходит адсорбция солей  Са и некоторых кислот, представляющих собой продукты щелочного распада инвертного сахара, образовавшегося на ОД. Особое значение имеет адсорбция поверхностно-активных веществ (ПАВ), замедляющих процесс кристаллизации и ухудшающих качество продукции.

Дополнительной дефекацией перед II сатурацией достигают разложение оставшихся в соке РВ и дополнительного  разложения амидов, повышается эффект очистки и уменьшается ЦВ и  содержание солей Са.

II сатурация необходима  для промежуточного отделения  осадка несахаров при избыточной Щ, которая необходима для предотвращения перехода осажденных солей Са снова в раствор сока. При проведении II сатурации нужно как можно полнее осадить ионы Са, довести активную Щ до такой величины, которая обеспечивала бы эффективное проведение сульфитации и минимальное разложение сахарозы при выпаривании, получение термоустойчивого сока и сиропа.

Основные цели сульфитации: обесцвечивание соков путем восстановления красящих веществ в бесцветные соединения, уменьшение Щ и вязкости сиропа путем замены K2CO3 на K2SO3. Основной эффект сульфитации заключается в предотвращении образования красящих веществ.

При выборе схемы очистки  диффузионного сока из свеклы того или иного качества необходимо руководствоваться  требованиями к технологическим  показателям диффузионного сока и сока очищенного. Критерием в  этом должен быть максимальный выход  сахара, соответствующего показателям  ГОСТ, при оптимальном расходе  извести.

Достижение поставленных требований обеспечивают соблюдение оптимальных  параметров и использованием вспомогательных  материалов (флокулянтов, пеногасителей, подщелачивающих агентов) для интенсификации процессов.

1.6.1.Т е х н о л о г и ч е с к и е п а р а м е т р ы п р о ц е с с а П Д.

Холодная Теплая Температура, оС 40-50 50-60 Длительность процесса, мин 20-30 12-15 pH2o преддефекованного сока, ед. 10.8-11.2 10.8-11.2 Количество возврата, % к массе свеклы: сгущенная суспензия, % 10-20 10-20 сок I сатурации, % 30-100 30-100 скорость отстаивания см/мин 1.5-3.0 1.5-3.0 _

1.6.2.Т е х н о л о г и ч е с к и е п а р а м е т р ы п р о ц е с с а О Д.

Холодная Теплая Горячая  Температура, оС 40-50 50-60 85-90 Расход извести, % к массе НСХ диффузионного сока 85-120 85-120 (% к массе свеклы) (2.0-3.0) (2.0-3.0) Щ по ф-ф, % СаО 0.8-1.1 0.8-1.1 0.8-1.1 Оптимальная длительность с учетом возврата, мин 20-30 10-15 5-10

1.6.3.Т е х н о л о г и ч е с к и е п а р а м е т р ы п р о ц е с с а I с а т у р а ц и и. Длительность, мин 10 pH2o сока, ед. 10.8-11.2 Содержание СО2 в сатурационном газе, % 28-35 Давление сатурационного газа, МПа 0.04-0.06 Количество рециркулирующего сока I сатурации, % (регулируется в зависимости от качества диф. сока) 300-800 Средняя скорость отстаивания, см/мин 2.5-5.0 Коэффициент использования сатурационного газа, % 65-75

1.6.4.Т е х н о л о г и ч е с к и е п а р а м е т р ы п р о ц е с с а д е ф е к а ц и и п е р е д II с а т у р а ц и е й. Температура, оС 90-96 Длительность, мин 2-5 Щ по метилоранжу, % СаО 0.2-0.6 Расход извести, % от общего 10-25

- для порченной свеклы 30

1.6.5.Т е х н о л о г и ч е с к и е п а р а м е т р ы п р о ц е с с а II с а т у р а ц и и. Длительность, мин 10 pH2o, ед. 9.2-9.7 Содержание СО2, % 28-35 Цветность, усл. ед. не более 18 Содержание солей Са, % СаО 0.03-0.10 Доброкачественность, % 88-92

1.6.6.Т е х н о л о г и ч е с к и е п а р а м е т р ы п р о ц е с с а с у л ь ф и т а ц и и. pH2o сока 8.9-9.2 pH2o сиропа 8.0-8.5 pH2o клеровки перед сульфитацией не ниже 7.2 Содержание свободных сульфитов в соке и сиропе, % SO2 к массе продукта 0.002-0.003

1.7.С Г У Щ Е Н И Е С О К А В Ы П А Р И В А Н И Е М.

По значению выполняемых  функций, сложности и стоимости  в тепловой схеме центральное  место занимает выпарная установка, которая состоит из отдельных  аппаратов.

Сок II сатурации должен быть сгущен до сиропа с содержанием сухих  веществ до 65-70% при первоначальном значении этой величины 14-16%.

Выпарная установка позволяет  расходовать на сгущение сока 40-50% пара к массе всего сока за счет многократного  использования парового тепла.

Сок поступает в I корпус, а затем проходит все корпуса установки последовательно и из концентратора удаляется сироп.

Ретурный пар используется только в I корпусе выпарной установки. Последующие корпуса обогреваются вторичными парами предыдущих корпусов. Из последнего корпуса соковый пар поступает на концентратор, а с него на конденсатор.

Число ступеней выпарной установки  выбирается на основании технико-экономического расчета, в котором учитывается: капитальные затраты, эксплуатационные расходы. Увеличение числа ступеней выпарной установки (ВУ) приводит, с  одной стороны, к уменьшению расхода  греющего пара, что влечет за собой уменьшение эксплуатационных расходов, с другой стороны, к увеличению суммарной поверхности нагрева выпарных аппаратов, что приводит к увеличению капитальных затрат.

На выбор числа ступеней существенное влияние оказывает  температурный режим ВУ, т.е. условие, что полезная разность температур в  каждом корпусе должна быть не менее 6-8оС.

Четырехкорпусная ВУ с концентратором отличается повышенной устойчивостью в эксплуатации и высокой тепловой экономичностью, благодаря большой кратности использования ее вторичных паров. Эта ВУ в настоящее время принята в качестве типовой. Масса воды (W), выпариваемой в ВУ, зависит от содержания сухих веществ в очищенном соке (СВ1) и сиропе (СВ2).

СВ1

W = Q (1 - ДДД ), где

СВ2 Q - масса очищенного сока.

Образующийся в выпарных аппаратах и других теплообменниках  конденсат систематически выводится  в сборники через конденсатные колонки. Конденсат отработавшего пара используется для питания паровых котлов, а  конденсат вторичных паров - для  нагрева различных промежуточных  продуктов.

Необходимо постоянно  отводить некондесирующиеся газы из паровых камер, которые накапливаясь в верхней части греющих камер, препятствуют потоку притекать к поверхности теплообменника. Неконденсирующиеся газы из верхней части греющих камер по трубопроводам выводятся в пространство с давлением пара на одну ступень ниже, чем давление греющего пара. При таких условиях отводимый с газами пар не теряется бесполезно; кроме того, из-за разности давлений создается непрерывное движение газа от I корпуса к кондесатору смешения.

Для создания разрежения в  последнем корпусе и концентраторе  и удаления неконденсирующихся газов  из системы в схему включена вакуум-кондесационная установка, состоящая из двух ступеней: предконденсатора, основного конденсатора, каплеловушек, сборников барометрической воды и вакуум-компрессора.

При выпаривании в соке происходят химические превращения: снижение рН, нарастание цветности, образование осадков. Эти процессы протекают наиболее интенсивно в термолабильном соке, т.е. соке, неустойчивом к температурному воздействию.

Снижение рН обусловлено разложением в соке 0.04-0.06% сахарозы, до 30% редуцирующих веществ и образованием органических кислот. Чтобы поддерживать необходимый рН в ВУ (примерно 7.5-8), в сок перед II сатурацией добавляют тринатрийфосфат.

Цветность сиропа нарастает  в результате разложения редуцирующих веществ и их взаимодействиями с  аминокислотами, а также карамелизации сахарозы. Интенсивность этих реакций зависит от рН, t, концентрации реагирующих веществ, реагентов, продолжительности выпаривания, наличия ионов железа и прочих факторов.

Результатом образования  осадков в сиропе при выпаривании  является снижение растворимости солей  Са, когда они оказываются в пересыщенном состоянии и их избыток выкристаллизовывается.

Одним из эффективных способов торможения реакции образования  красящих веществ в ВУ является достижение достаточного полного разложения редуцирующих сахаров в процессе очистки сока и минимального разложения сахарозы при выпаривании. Немаловажное значение имеют также содержание оптимального уровня в кипятильных трубках  и равномерное распределение  греющего пара в греющих камерах  выпарных аппаратов, что предохраняет поверхности нагрева в _ местах ввода  пара от пригорания сахара.

Образование накипи на внутренней поверхности трубок выпарных аппаратов  вследствие выделения и осаждения  солей минерального происхождения  постоянно снижает коэффициент  теплопередачи и приводит к понижению  производительности станции. Для восстановления нормальной работы выпарной станции  применяются механические методы или  химические методы очистки поверхности  нагрева.

Иногда используют деминерализацию  сока перед выпариванием путем пропускания  его через ионообменные смолы.

Борьба с накипеобразованием в теплообменной аппаратуре возможна с помощью ультразвуковых колебаний, которые нарушают обычный процесс образования накипи и действуют разрушающе на нее.

1.8.У В А Р И В  А Н И Е, К Р И С Т  А Л Л И З А Ц И Я И

Ц Е Н Т Р И Ф У Г И Р О В А Н И Е У Т Ф Е Л Е Й.

Кристаллизация сахара - завершающий этап в его производстве. Здесь выделяют практически чистую сахарозу из многокомпонентной смеси, которой является сироп.

В сокоочистительном отделении из диффузионного сока удаляется около 1/3 несахаров, остальные несахара вместе с сахарозой поступают в продуктовое отделение, где большая часть сахарозы выкристаллизовывается в виде сахара-песка, а несахара остаются в межкристальном растворе.

Выход сахара на 75% зависит  от потерь сахара в мелассе. Потери в продуктовом отделении определяют технико-экономические показатели завода. Качество сахара прямо связано  с потерями его в мелассе. Задачей  оптимизации технологического процесса является выбор между глубоким истощением мелассы и качеством песка.

Информация о работе Технология производства сахара из сахарной свеклы