Способы подготовки воды

Автор работы: Пользователь скрыл имя, 07 Ноября 2014 в 12:41, реферат

Краткое описание

Наличие различных примесей в природной воде является причиной приготовления воды для подпитки и заполнения контуров АЭС на водоподготовительной установке в несколько стадий. Сначала из воды удаляют грубодисперсные и коллоидные частицы, а затем – ионизированные примеси.

Вложенные файлы: 1 файл

1 Способы подготовки воды.docx

— 25.04 Кб (Скачать файл)

1 Способы подготовки воды

Наличие различных примесей в природной воде является причиной приготовления воды для подпитки и заполнения контуров АЭС на водоподготовительной установке в несколько стадий. Сначала из воды удаляют грубодисперсные и коллоидные частицы, а затем – ионизированные примеси.

Природная вода, разделяемая условно на атмосферную, поверхностную, подземную и морскую, всегда содержит различные примеси. Характер и количество, имеющихся в воде примесей, определяют качество воды, т.е. характеризует возможность использования ее для различных целей в промышленности и быту. Примеси поступают в воду, находящуюся в природном круговороте, из окружающей среды.

Количественный и качественный составы примесей, содержащихся в реках и водоемах, зависит от метеорологических условий и подвержены сезонным колебаниям. Так, весенний паводковый период, после вскрытия льда, воды содержат минимальное количество растворимых солей, однако характеризуются максимальным количеством взвешенных веществ, увлекаемых с поверхности почвы быстрыми потоками талых вод. В зимний период в результате питания поверхностного водотока подземными водами его солесодержания достигает максимума. В летнее время состав речной воды определяется соотношением в питании долей поверхностного и подземного стоков. Природные воды классифицируют солесодержанию. Различают пресную воду (солесодержание до 1 г/кг), солоноватую (солесодержание 1–10 г./кг) и соленую (солесодержание более 10 г./кг). Солесодержание определяется суммарной концентрацией всех катионов и анионов в воде. Важнейшим показателем, определяющим путь использования воды в теплоэнергетики, является жесткость воды. По значению общей жесткости природные воды классифицируются так: воды с малой жесткостью; воды со средней жесткостью; воды с повышенной жесткостью; воды с высокой жесткостью и воды с очень высокой жесткостью.

Существуют следующие виды очистки. Механические методы очистки включают в основном отстаивание, осветление и фильтрацию. Эти наиболее доступные приемы очистки от крупнодисперсных взвесей применяются как первая стадия в общей схеме очистке вод.

Физико-химические методы применяют для очистки от мелкодисперсных, коллоидных и растворенных веществ. Это флотация, коагуляция и флокуляция, экстракция растворителями, дистилляция и ректификация, адсорбция, обратный осмос и др. Принцип флотационной очистки заключается в образовании комплексов частица – пузырек воздуха, всплывании пузырьков и удалении образовавшегося слоя насыщенной примесями пены с поверхности воды.

Для очистки от растворенных примесей применяют обратный осмос, ультрафильтрацию, электродиализ, ионный обмен, абсорбцию, экстракцию, радиационно-химический метод.

Обратным осмосом или гиперфильтрацией называют процесс разделения истинных растворов продавливанием их через полунепроницаемые мембраны, которые пропускают воду, но задерживают гидратированные ионы солей и молекулы органических соединений. Ультрафильтрация – разделение растворов, содержащих высокомолекулярные соединения, мембранами, поры которых имеют диаметр 5–200 нм. Гиперфильтрацию производят с помощью полимерных мембран – ацетат целлюлозных, полиамидных и др.

Электродиализ заключается в направленном движении ионов под действием постоянного электрического тока. Для разделения и удаления ионов в установке имеются специальные катионитные и анионитные мембраны, изготовленные из ионообменных смол, которые пропускают ионы только одного знака заряда.

Для технического водоснабжения не требуется вода высокой чистоты, получаемая дионизацией. Здесь достаточно снижение обратным осмосом ее солесодержание в 15–20 раз по Na+, K+, SO-4, Cl- и в первую очередь удаление солей жесткости в 25–50 раз по Ca2+, Mg2+, что дает значительный эффект. Для водоочистки в этом случае наиболее оправданы безреагентные методы, при использовании которых не образуются токсичные отходы. Наиболее широко известный безреагентный метод упаривания, используемый при переработке жидких отходов, в водоподготовке для технического водоснабжения не применяется из-за больших энергетических затрат. Исключение составлявляла АЭС, где с помощью дистилляционной установки опресняли морскую воду. Более перспективными в этом случае являются мембранные методы, в частности, обратный осмос, получающий в последние годы все более широкое распространение для опреснения воды в тепловой и очистки от радионуклидов в ядерной энергетике. В последнем случае обратный осмос значительно превосходит по эффективности другой мембранный метод-электродиализ.

Водоподготовка на обратноосмотических фильтрах не требует в отличие от очистки отходов получения высокого солесодержания в концентрате и, следовательно, позволяет использовать низкое давление и более простые аппараты. Концентраты при водоподготовке содержат только исходные соли природных вод и при сбросе в окружающую среду не вносят дополнительных загрязнений. После обратноосмотического опреснения существенно снижается нагрузка на ионообменные фильтры при получении деинизированной воды для теплоносителей. Кроме того, при снижении солесодержания технической воды увеличивается ресурс оборудования системы технического водоснабжения вследствие уменьшения коррозии трубопроводов и отложений на их внутренних стенках солей жесткости. Главным эффектом является снижение солевой нагрузки на установки спецводоочистки (установки очистки жидких отходов). Таким образом, соли извлекаются еще до их попадания в общую среду с радионуклидами.

На основании разработанных и использованных в НИТИ им. А.П. Александрова установок водоподготовки и спецводоочистки можно сделать вывод, что обратноосмотическая очистка технической воды существенно улучшает условия эксплуатации и снижает соленость. Дополнительные затраты на предварительное обессоливание технической воды компенсируются снижением расходов на переработку отходов и в конечном итоге способствуют сокращению объема твердых отходов вследствие уменьшения содержания балластных солей, подлежащих захоронению. В технологии переработки отходов существенным фактором снижения энергозатрат является операция их предварительного обратноосмотического концентрирования.

Разработанные модульные мембранно-сорбционные установки, применяемые в настоящее время для очистки маломинерализованных низко активных отходов, имеют производительность 0,5–2 м3/ч при сравнительно небольших габаритах и массе (размер обратноосмотического модуля 1050х700х1800 мм, масса нетто 180 кг.) Они могут обеспечивать в необходимых объемах, как водоподготовку, так и спецводоочистку (до 4000–15000 м3/год). В первом случае достаточными являются только мембранные модули.

Ионообменный способ очистки сточных вод, содержащих растворенные примеси минерального и органического происхождения, получает все большее распространение, так как он позволяет регенерировать ценные вещества и глубоко очищать воду перед ее повторным использованием в оборотных системах водоснабжения. Ионообмен целесообразен как завершающая стадия доочистки и корректировки оборотной воды, а также для полного извлечения и утилизации токсичных веществ.

Адсорбционный метод – один из наиболее доступных и эффективных способов глубокой очистки от растворенных органических веществ. Применяя активные сорбенты, можно полностью очистить воду от органических примесей, даже при весьма малых их концентрациях, когда другие приемы очистки неэффективны.

Химические (реагентные) методы применяют главным образом для обезвреживания и удаления неорганических примесей. К реагентным методам относятся нейтрализация кислот и щелочей, переведение ионов в малорастворимые соединения, соосаждение неорганических веществ. Химические методы характеризуются высокими расходными коэффициентами по реагентам и громоздкой аппаратурой, особенно отстойной. Помимо небольших экономических показателей недостатком реагентного метода является образование новых соединений – осадков, которые приходится направлять в накопители осадков и на шламовые площадки, т.е. дополнительно загрязнять почву и занимать земельные участки отвалами.

В результате рассмотренных способов очистки выбираем ионообменную очистку, так как именно этот способ позволяет более глубоко очищать воду. Сначала из воды удаляют грубодисперсные и коллоидные частицы, а затем – ионизированные примеси (химическим обессоливанием воды).

Осветление воды, называемое предварительной очисткой, осуществляют в основном осаждением, в результате которого из воды выделяются примеси в виде осадка. К осаждению относят процессы коагуляции и известкования, проводимые, как правило, в осветлителе. Из обрабатываемой воды выделяется основная масса осадка, состоящего из хлопьевидных образований с включенными в них коллоидными и грубодисперсными примесями. Окончательную очистку воды от осадка производят фильтрованием, оборудование для которого также относится к предочистке. Физико-химический процесс укрупнения коллоидных частиц за счет их слипания, который завершается выделением вещества в осадок, удаляемый осаждением или фильтрованием, называется коагуляцией.

Обработку воды гашеной известью – гидрооксидом кальция – называют известкованием. При известковании достигают частичного умягчения воды. Коагуляцию и известкование осуществляют в осветлителях.

Вода, прошедшая обработку в осветлителях, содержит 10–20 мг/кг грубодисперсных примесей, которые должны быть удалены перед последующими технологическими стадиями водообработки. В период весенних и осенних паводков в 1 кг воды поверхностных водоемов содержание грубодисперсных примесей колеблется от несколько единиц миллиграммов до нескольких сотен, эти примеси должны быть удалены при использовании воды для технических целей фильтрованием.

1.1.2 Конструкции фильтров

В реальных условиях работы механических фильтров, диаметр зерен фильтрующей загрузки которых составляет примерно 0,5 мм и более (крупнозернистые загрузки), высота фильтрующего слоя близка к минимальной высоте фильтрующего слоя, хотя высота слоя в фильтрах составляет иногда около 2 м. Эти фильтры получили название насыпных фильтров.

При уменьшении диаметра поровых каналов (диаметра зерен фильтрующей загрузки) можно создать условия чисто поверхностного фильтрования. В этом случае не требуется высоких слоев фильтрующего материала. Тонкослойные фильтры с мелкозернистым фильтрующим слоем (dср ~ 0,05 мм) называют намывными фильтрами. Поскольку реальные взвеси имеют определенный спектр дисперсности, нижняя граница которого всегда меньше среднего диаметра поровых каналов загрузки намывных фильтров, рассмотренный выше механизм имеет место и при работе намывных фильтров. Разница между намывными и насыпными фильтрами заключается в том, что при работе последних задерживаемая взвесь скапливается выше верхней границы загрузки только к концу работы фильтра, а при работе первых – с самого начала, т.е. насыпные фильтры, работают в основном режиме объемного фильтрования, постепенного переходящего в поверхностное, а намывные работают, главным образом, в режиме поверхностного фильтрования, сопровождающегося объемным.

Намывные механические фильтры получили свое название от процесса загрузки в них фильтрующего материала, который перед началом фильтрования подается на намывной фильтр в виде концентрированной суспензии. Твердые частицы этой суспензии отделяются от ее жидкой фазы на специальной фильтровальной перегородке. Накапливаясь на последней, частицы суспензии создают слой определенной высоты, зависящий от концентрации и времени прокачки исходной суспензии. Процесс этот принято называть намывом. По окончании намыва в фильтр подают очищаемую воду. Задержание взвешенных в этой воде частиц происходит уже не на фильтровальной перегородке, а на ранее намытом фильтрующем слое.

Резкое количественное изменение геометрических характеристик фильтрующих слоев в намывных механических фильтрах неизбежно влечет за собой качественное изменение процесса задержания взвешенных в очищаемой воде частиц.

Обычно максимальный размер частиц, взвешенных в контурных водах АЭС, для очистки которых чаще всего используют намывные фильтры, не превышает (1,5 – 2).10-6 м. Поэтому при работе намывных фильтров наряду с образованием конгломератов из задерживаемых на поверхности поровых каналов частиц улавливаемой взвеси возможно также и образование <<сводиков>> из крупных частиц взвести (dr > 0,1 dэ) непосредственно на входе в поровые каналы слоя. Кроме того, из-за малой скорости фильтрования, применяемой в намывных механических фильтрах, рост конгломератов может происходить вплоть до полной закупорки порового канала слоя. Следовательно, начавшийся на высоте 3,2×10-3 мм рост конгломератов приведет к полной закупорке поровых каналов практически уже в лобовом слое. Из изложенного вытекает основная особенность задержания взвесей мелкодисперсным слоем: процесс протекает, главным образом, по механизму поверхностного фильтрования.

Задерживаемые мелкозернистым фильтрующим слоем частицы образуют на его поверхности собственный фильтрующий слой, называемый вторичным фильтрующим слоем, который сразу же становится основным источником гидравлического сопротивления. Темп рост сопротивления возрастает с ростом скорости фильтрования и концентрации взвешенных частиц в очищаемой воде. Поэтому при больших концентрациях частиц, характерных, например, для осветленной после коагуляции или известкования воды, применение намывных фильтров нецелесообразно из-за слишком быстрого роста перепада давления, cводящего к минимуму период работы фильтра. Небольшие периоды работы фильтра неэкономичны не только потому, что требуют для непрерывной очистки потока воды большого количества резервных площадей фильтрования, подключаемых к работе в момент смыва и намыва материала на основные фильтры, но также и из-за увеличенного при этом расхода фильтрующего материала, который на намывных фильтрах вследствие трудности отделения его от уловленных частиц взвеси используется однократно. Поэтому-то намывные фильтры и применяются только для очистки конденсатов и контурных вод, где концентрация твердых продуктов коррозии железа не превышает в период нормальной работы 100 – 50 мкг/кг.

Информация о работе Способы подготовки воды