Промышленная водоподготовка

Автор работы: Пользователь скрыл имя, 25 Ноября 2013 в 11:15, реферат

Краткое описание

В процессе промышленной водоподготовки применяют механические, физические, химические и физико-химические методы: осветление, умягчение, ионный обмен, обескремнивание и дегазацию. Питьевую воду, кроме того, дезинфицируют. В приведенной на рис. 1.1 схеме показаны основные методы промышленной водоподготовки.

Вложенные файлы: 1 файл

Пром.подготовка.doc

— 155.00 Кб (Скачать файл)

Промышленная  водоподготовка

В процессе промышленной водоподготовки применяют  механические, физические, химические и физико-химические методы: осветление, умягчение, ионный обмен, обескремнивание  и дегазацию. Питьевую воду, кроме  того, дезинфицируют. В приведенной на рис. 1.1 схеме показаны основные методы промышленной водоподготовки. Осветление воды осуществляется в основном методами осаждения примесей, выделяющихся из воды в виде осадка. Эти методы называют также реагентными, так как для выделения примесей в воду вводят специальные реагенты. К процессам осаждения, применяемым для осветления воды в промышленной водоподготовке, относятся коагуляция, известкование и магнезиальное обескремнивание.

Рис. 1.1. Схема  очистки воды

Под коагуляцией понимают физико-химический процесс слипания коллоидных частиц и образования грубодисперсной  микрофазы (флокул) с последующим  ее осаждением. В качестве реагентов  для промышленной водоподготовки, обычно применяют сульфаты Al2(SO4)и FeSO4. Повышение эффекта коагуляции достигается при добавлении флокулянтов (полиакриламида, активной кремниевой кислоты и др.). При этом ускоряется образование хлопьев и улучшается их структура. Образовавшуюся хлопьевидную массу, состоящую в основном из гидроксидов Аl и Fe и примесей, выделяют из воды в отстойниках или специальных осветлителях (осадок в них поддерживается во взвешенном состоянии потоком поступающей снизу воды), напорных или открытых фильтрах и контактных осветлителях с загрузкой из зернистых материалов (кварцевый песок, дробленый антрацит, керамзит, шунгизит и др.), а также во флотаторах, гидроциклонах, намывных фильтрах. Для частичного удаления крупнодисперсных примесей и фитопланктона, образующегося при цветении водоемов, применяют сетчатые микрофильтры, плоские и барабанные сетки.

Известкование воды производится для снижения гидрокарбонатной щелочности воды. Одновременно с этим уменьшаются жесткость, солесодержание, концентрации грубодисперсных примесей, соединений железа и кремниевой кислоты. Реагентом для этого процесса является гашеная известь Са(ОН)2, которая подается в воду в виде суспензии (известкового молока). Для повышения эффективности удаления кремниевой кислоты при водоподготовке воду добавляют каустический магнезит (70…80 % MgO). Эти процессы, как правило, совмещаются и проводятся одновременно в одном аппарате – осветлителе. Окончательная очистка от осадка осуществляется с помощью фильтрования. В зависимости от соотношения размеров фильтруемых частиц и эффективного диаметра пор удержание частиц может происходить как в объеме фильтрующего слоя (адгезионное фильтрование), так и на его поверхности (пленочное фильтрование). В качестве фильтрующих материалов в основном используют кварцевый песок, дробленый антрацит, сульфоуголь, целлюлозу, перлит, вулканические шлаки, керамзит и др.

Умягчение воды в  промышленной водоподготовке - очистка  от соединений кальция и магния, обусловливающих жесткость воды. Одним из наиболее эффективных способов умягчения воды является известково-содовый в сочетании с фосфатным. Процесс умягчения основывается на следующих реакциях: 

1. Обработка гашеной  известью для устранения временной  жесткости, удаления ионов железа  и связывания СО2:

Са(НСО3)+ Са(ОН)→ 2СаСО↓ + 2Н2О;

Mg(HCO3)+ 2Ca(OH)→ 2СаСО↓ + Mg(OH)↓ + 2H2O;

FeSO+ Ca(OH)→ Fe(OH)↓ + CaSO↓;

CO+ Ca(OH)→CaCO↓ + H2O;

2. Обработка  кальцинированной содой для устранения  постоянной жесткости:

MgSO+ Na2CO→ MgCO↓ + Na2SO4

MgCl+ Na2CO→ MgCO↓ + 2NaCl

CaS0+ Na2CO→ CaCO↓ + Na2SO4

3. Обработка тринатрийфосфатом  для более полного осаждения  катионов Са2+ и Mg2+:

3Ca(HCO3)+ 2Na3PO→ Са3(РО4)↓ + 6NaHCO3;

3MgCI+ 2Na3PO→ Mg3(PO4)↓ + 6NaCl.

Растворимость фосфатов кальция и магния ничтожно мала, что обеспечивает высокую эффективность фосфатного метода.

Сегодня в промышленной водоподготовке для умягчения, обессоливания  воды и удаления кремня специалисты  РХТУ им. Д.И. Менделеева применяют мембранные технологии (нанофильтрации и низконапорный обратный осмос), а также технологии ионного обмена. Сущность метода ионного обмена в том, что твердое тело – ионит – поглощает из раствора электролита положительные или отрицательные ионы в обмен на эквивалентное количество других, одноименно заряжен- ных ионов. В соответствии со знаком заряда обменивающихся ионов различают катиониты и аниониты.

Катиониты – практически  нерастворимые в воде вещества, представляющие собой соли или кислоты с анионом, обусловливающим нерастворимость в воде; катион же (натрий или водород) способен вступать в определенных условиях в обменную реакцию с катионами раствора, в котором находится катионит. Катиониты соответственно называются Na-катионитами и Н-катионитами.

Аниониты –  основания или соли с твердым  нерастворимым катионом. Аниониты содержат подвижную гидроксильную группу (ОН-аниониты).

В качестве Na-катионитов в промышленной водоподготовке применяют алюмосиликаты: глауконит, цеолит, пермутит и другие; в качестве Н-катионитов – сульфоуголь, синтетические  смолы; к ОН-анионитам относятся  искусственные смолы сложного состава, например карбамидные. Ионный обмен между раствором и ионитом имеет характер гетерогенной химической реакции. Следует отметить, что примеси, удаляемые из воды методом ионного обмена, не образуют осадка, и что такая обработка не требует непрерывного дозирования компонентов. Важной характеристикой ионитов является обменная емкость, показывающая способность ионита поглощать определенное количество ионов в данных условиях. Обменная емкость определяет продолжительность рабочего цикла ионитовых фильтров. При достижении заданного предела обменной емкости ионита проводят процесс его восстановления (ионный обмен, проводимый в обратном порядке). В основе катионного процесса умягчения лежат реакции обмена ионов натрия и водорода катионитов на ионы Са2+ и Mg2+. Обмен ионов натрия называется Na-катионированием, а ионов водорода – Н - катионированием:

2R/Na+ Ca2+ R2/Ca2+ + 2Na+;

2R/Na+ Mg2+ R2/Mg2+ + 2Na+,

где R – комплекс матрицы и функциональной группы, не участвующей в ионном обмене (его принято считать одновалентным). 
Обмен катионов при Н-катионировании протекает согласно реакциям:

2R/H+ Ca2+ R2/Ca2+ + 2H+;

2R/H+ Mg2+ R2/Mg2+ + 2H+;

R/H+ Na+ R/Na+ H+.      

 При достижении катионитами заданного предела обменной емкости их регенерируют промывкой раствором NaCl или серной кислоты H2SO4. Регенерация Н-катионного фильтра производится 1…1,5 %-ным раствором серной кислоты. Регенерация анионитовых фильтров производится обычно 4 %-ным раствором NaOH.

На рис. 1.2 представлена схема установки для водоподготовки с последовательным применением Н - катионирования и ОН-анионирования. При прохождении воды через катионит она освобождается от ионов кальция и магния в Н-катионитовом фильтре 1, а затем в анионитовом фильтре 2 из нее удаляются анионы. Далее вода проходит через дегазатор 3, где она освобождается от кислорода и диоксида углерода, и далее через сборник 4 к потребителю. Для регенерации в фильтр 1 подается раствор серной кислоты, в фильтр 2 – гидроксида натрия.

Рис. 1.2. Схема  установки для умягчения воды: 1 – катионитовый фильтр; 2 – анионитовый  фильтр; 3 – дегазатор; 4 – сборник  воды.

Важная  часть комплексного технологического процесса водоподготовки – удаление из воды растворенных газов. Наличие газов в воде объясняется как их сорбцией и протеканием химических реакций в процессе образования примесей в природной воде, так и появлением их в процессе различных стадий очистки. Эти газы можно разделить на химически невзаимодействующие (Н2, О2, СН4) и химически взаимодействующие с водой и ее примесями (NH3, CO2, Сl2), а также на коррозионно-активные (О2, СО2, NH3, Cl2, H2S) и инертные (N2, H2, СН4). Концентрация газов в воде зависит от многих факторов, основные из них – физическая природа газа, степень насыщения, давление в системе и температура воды.

Основной способ удаления из воды растворенных газов  процессе водоподготовки – десорбция (термическая деаэрация). Принцип  ее заключается в создании контакта воды с паром, в котором парциальное  давление газа, удаляемого из воды, близко к нулю, что является необходимым условием процесса десорбции. Этот процесс осуществляется, в основном, в деаэраторах (вакуумных, атмосферных, постоянного давления), которые по способу распределения воды и пара разделяют на струйные, пленочные и барботажные. Интервал рабочего давления в вакуумных деаэраторах составляет 0,0075…0,05 МПа.

Промышленная  водоподготовка в ряде случаев требует  использования химических методов. Так, для удаления кислорода в  воду добавляют сильные восстановители; для удаления H2S воду хлорируют.

Для получения  дистиллята, необходимого для промышленного  производства химически чистых реактивов, лекарственных препаратов, проведения различных анализов в лабораторной практике применяется термическое обессоливание воды для водоподготовки. Этот процесс осуществляется в испарителях кипящего типа. При этом дистиллят производят в основном из воды, предварительно умягченной на ионитовых фильтрах.

Наличие в воде болезнетворных микроорганизмов и  вирусов делает ее не пригодной для  хозяйственно-питьевых нужд, а присутствие  в воде некоторых видов микроорганизмов (например, нитчатых, зооглейных, сульфатовосстанавливающих бактерий, железобактерий) вызывает биологическое обрастание, а иногда разрушение трубопроводов и оборудования для водоподготовки и водоснабжения. Обеззараживание воды осуществляют, в основном, путем хлорирования ее жидким или газообразным Сl2, гипохлоритами – NaClO, Ca(СlО)2, СlO2. Для обеззараживания воды применяют также озон и ультрафиолетовое облучение.


Информация о работе Промышленная водоподготовка