Курсовая работа на тему исследование транзистора

Автор работы: Пользователь скрыл имя, 18 Июня 2014 в 19:44, курсовая работа

Краткое описание

Выбор структурной схемы усилителя. Расчет оконечного каскада, элементов схемы по постоянному току, глубины общей ООС.

Содержание

Введение…………………………………………………………………………..2
1. Обоснование выбора структурной схемы усилителя………………………..6
2. Ориентировочный расчет числа каскадов усиления………………………...7
3. Обоснование выбора принципиальной схемы усилителя…………………..8
4. Расчет оконечного каскада…………………………………………………...10
5. Расчет элементов схемы по постоянному току……………………………..17
6. Расчет глубины общей ООС…………………………………………………23
7. Проверочный расчет коэффициента усиления усилителя…………………26
8. Расчет удлинителя в цепи общей ООС…………………………………….. 28
9.Заключение по результатам расчетов………………………………………...29
10. Список использованной литературы……………………………………….30

Вложенные файлы: 1 файл

готовая курсовая полностью с графиками.doc

— 479.00 Кб (Скачать файл)


Содержание

Введение…………………………………………………………………………..2

1. Обоснование выбора структурной схемы усилителя………………………..6

2. Ориентировочный расчет числа каскадов усиления………………………...7

3. Обоснование выбора принципиальной схемы усилителя…………………..8

4. Расчет оконечного каскада…………………………………………………...10

5. Расчет элементов схемы по постоянному току……………………………..17

6. Расчет глубины общей ООС…………………………………………………23

7. Проверочный расчет коэффициента усиления усилителя…………………26

8. Расчет удлинителя в цепи общей ООС…………………………………….. 28

9.Заключение по результатам расчетов………………………………………...29

10. Список использованной литературы……………………………………….30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Аппаратура систем передачи содержит большое число усилителей электрических сигналов. Наиболее сложными являются линейные усилители, которые устанавливаются на промежуточных усилительных пунктах и служат для компенсации затухания прилегающих к усилительному пункту участков линии связи. Параметры линейных усилителей в значительной степени определяют основные качественные показатели системы передачи в целом.

Исходными данными для проектирования линейных усилителей служат следующие основные параметры, задаваемые в технических требованиях; рабочий диапазон частот, номинальное усиление, входные и выходные сопротивления, затухание нелинейности, нестабильное усиление и др.

Рабочий диапазон частот линейных усилителей определяется линейным спектром системы передачи. Так, в системе передачи К-60П линейный усилитель работает в диапазоне 12–125 кГц, в системе передачи К-120 усилитель в одном направлении работает в диапазоне 60–552 кГц, а в другом – в диапазоне 812–1304 кГц (в задании в учебных целях рассматривается не один, а два усилителя – для каждого направления передачи).

Под номинальным усилением усилителя S понимается: то усиление усилителя, которое соответствует затуханию усилительного участка номинальной длины на верхней частоте рабочего диапазона частот усилителя. В линейных усилителях предусмотрена установочная регулировка усиления при отклонении длины усилительного участка от номинального значения. Для этого в цепь общей ООС усилителя включен переменный удлинитель.

В технике связи в качестве меры усиления усилителя пользуется значением величины его рабочего усиления. При согласованных сопротивлениях рабочее усиление определяется по формуле:

, дБ где  напряжение на выходе усилителя; напряжение на входе усилителя.

 

 

Наличие нелинейных искажений в линейных, усиливающих одновременно сигналы различных каналов, приводит к тому, что паразитные нелинейные продукты могут попадать из одних каналов в другие. Взаимные помехи каналов проявляются в этих случаях в виде шума, мешающего качественной передаче.

Количественно оценить нелинейные искажения, можно с помощью коэффициента нелинейных искажений или коэффициента затухания нелинейности а по формуле а = 20 lg , Дб.

Примечание. В каскадах предварительного усиления для унификации расчётов используются транзисторы того же типа, что и в оконечном каскаде.

Обычно наибольшее значение в усилителях имеют вторые и третьи гармоники основного сигнала, поэтому в линейных усилителях величина затухания нелинейности задается по второй и третьей гармоникам:

A2г=20lg 1/K2г, дБ; а3г=20lg 1 /K3u,дБ

где К2г и К3г – коэффициенты нелинейных искажений по второй и третьей гармоникам.

Величина нелинейных искажений нормируется обычно при выходной мощности усилителя, равной мощности 1 мВт (при нулевом уровне на выходе); тогда затухание нелинейности по второй гармонике обозначается а , а по третьей а .

Весьма существенной является высокая стабильность величины и частотной зависимости усиления усилителя во времени. Как известно, причинами нестабильности во времени характеристик усилителя являются старение транзисторов, их замена, изменение напряжения питания усилителя и температуры окружающей среды.Нестабильность усилителя определяется по формуле

  • =20lg*(1+ ), дБ.

Где - изменение коэффициента усиления, отн. ед.; - коэффициента усиления, отн. ед.

 

 

Входные и выходные сопротивления линейных усилителей должны быть согласованны с сопротивлениями подключаемых к ним цепей. Степень несогласованности входного сопротивления усилителя и сопротивления источника , а также выходного сопротивления усилителя и сопротивления нагрузки определяется коэффициентом отражения и

= и = .

 

Требования к коэффициенту отражении должны выполняться во всём рабочем диапазоне частот.

Собственные помехи усилителя нормируются величиной допустимого уровня собственных помех, приведённых ко входу усилителя

 Р .Собственные помехи усилителя, как правило, определяются входным каскадом, поэтому входной каскад должен быть малошумящим и иметь возможно большие усиление по мощности.

Затухание линии возрастает с повышением частоты и зависит от типа линии и длины участка. Кроме того, затухание участков линии не остаётся постоянным во времени, а изменяется при изменение внешних условий, воздействующих на параметры линии.

При этом затухание на разных частотах изменяется различным образом, т.е. изменяется не только его величина, но и форма частотной характеристики затухания. Для подземных кабельных линий изменение внешних условий заключается в изменении температуры почвы. Таким образом, линейный усилитель должен не только компенсировать затухание прилегающего участка линии, но и корректировать вносимые линией амплитудно-частотные искажения.

Цепь отрицательной обратной связи (ООС) содержит: переменный удлинитель, обеспечивающий частотно-независимое ручное регулирование усилителя под длину усилительного участка, так называемое установочное усиление ;

частотно-зависимый четырехполюсник с постоянными параметрами, обеспечивающий заданную амплитудно-частотную характеристику, иначе называемый контуром начального наклона (КНН);

частотно-зависимый четырехполюсник с переменными параметрами, обеспечивающий плавную регулировку усиления в соответствии с температурными изменениями затухания цепи (контур автоматической регулировки АРУ).

Поскольку к качественным показателям линейного усилителя предъявляются высокие требования, это предопределяет использование в их схемах достаточно глубокой общей ООС, которая организуется помощью дифференциальных систем на входе и выходе усилителя.

Дифференциальные системы представляют собой шестиполюсники мостового типа, позволяющие реализовывать комбинированную обратную связь. Трансформаторная дифференциальная система содержит дифференциальный (трёх обмоточный) трансформатор и балансное сопротивление, которое является опорным при сбалансировании дифференциальной системы. Так как выход цепи ООС и источника сигнала подключены к различным диагоналям входной дифференциальной системы, а вход цепи ООС и сопротивление нагрузки – к различным диагоналям выходной дифференциальной системы, при изменение глубины ООС входное и выходное сопротивление усилителя практически не будет меняться.Использование глубокой ООС, вводимой с помощью дифференциальных трансформаторов, позволяет помимо всего согласовывать входное и выходное сопротивления усилителя с сопротивлениями внешних цепей.

 

 

 

 

 

 

 

 

1. Обоснование выбора структурной  схемы усилителя

 

Структурная схема линейного усилителя представлена на рис. В качестве входного и выходного устройства линейного усилителя используются трансформаторные дифференциальные системы.

Оконечный каскад (ОК) усилителя обеспечивает заданную мощность сигнала в нагрузке при допустимых, с учетом действия ООС, нелинейных искажений.

Достаточная величина тока (напряжения) сигнала, необходимого для управления оконечным каскадом, обеспечивается каскадами предварительного усиления (КПУ).

Значения качественных показателей (затухания нелинейности, нестабильность и т.д.). Определяются максимальной глубиной ООС, которая охватывает все каскады усиления.

В цепь общей ООС для компенсации затухания усилительного участка и коррекции вносимых линий амплитудно–частотных

 

Искажений включаются: переменный удлинитель (дБ); контур начального наклона (КНН), контур автоматической регулировки (АРУ).

 

Рис.1.Линейный усилитель.Схема электрическая

структурная

 

 

 

2. Ориентировочный расчет числа  каскадов усиления

 

Число каскадов усиления определяется из формулы

 

N =Sбезос/Sкаск=60/20= 3;

где S без ос – усиление усилителя без обратной связи дБ;

 

S без ос = S + Aос =30 + 30 =60;

 

     

где S = 330 дБ; S номинальное усиление усилителя по таблице;

Aос – глубина ООС, выбирается в пределах 20–30 дБ; берем значение Aос=30, Sкаск – усиление одного каскада, выбирается в пределах 20–25 дБ. Берем значение Sкаск =20, N=3.

Выбираем 3 каскада.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Обоснование выбора принципиальной  схемы усилителя

   

       Принципиальная схема простейшего трехкаскадного линейного усилителя, составленного согласно описанной ранее структурной схеме, приведена на рис. Усилитель состоит из трех каскадов по схеме с ОЭ на транзисторах V1, V2, V3. Ток покоя каждого каскада стабилизируется с помощью эмиттерных схем стабилизации. Между первым и вторым каскадом связь непосредственная, между вторым и третьим – осуществляется через разделительный конденсатор C8.

Отсутствие делителя напряжения и разделительного конденсатора на входе второго каскада дает экономию количества элементов схемы и некоторую экономию тока питания, кроме того, отсутствие разделительного конденсатора снижает амплитудно-частотные искажения на низких частотах.Однако использование непосредственной связи имеет недостаток – требуется большее напряжение питания. Так как для второго каскада делителем напряжения служит первый каскад, все колебания режима первого каскада вызывают колебания режима второго. Поэтому в этой схеме важна особенно стабилизация режима первого каскада.Для ослабления паразитной обратной связи между каскадами через общий источник питания цепь питания содержит фильтрующие цепи R6, C3, R1, C5. Входные и выходные устройства усилителя выполнены на дифференциальных трансформаторах Т1, Т2. Резисторы R1, R16 – балансные.

В усилителе применена общая ООС, организуемая с помощью входного и выходного устройств. В пассивной части цепи ООС включены контур АРУ, КНН и переменный удлинитель R7, R10, R12. По входу и выходу имеет место комбинированная ООС. Обратная связь осуществляется только по переменному току, поэтому на входе и выходе цепи ООС установлены разделительные конденсаторы C2, C11.Конденсаторы C1, C7, C10 создают, путь высокочастотного обхода пассивной части петли ООС

 

 

 

Рис.2.Линейный усилитель. Схема электрическая

Принципиальная (упрощенная)

 

 

 

4. Расчет оконечного каскада

 

      Оконечный каскад обеспечивает получение заданной мощности сигнала в нагрузке, при этом он должен вносить допустимые нелинейные искажения. В линейных усилителях аппаратуры систем передачи используются однотактные трансформаторные оконечные каскады с включением транзистора по схеме с ОЭ. Усилительный элемент (транзистор) в таких каскадах работает в режиме А, что позволяет получить сравнительно небольшие нелинейные искажения.

Тип транзистора оконечного каскада выбирается по максимальной допустимой рассеиваемой мощности коллектора Рk max и граничной частоте коэффициента передачи тока fгр в схеме с ОЭ. При этом должны выполняться условия: fгр ≥(40÷100) fв; Рк мах ≥(4÷5) Рн, где Рн – мощность, отдаваемая в нагрузку.

fгр ≥ 60*1304 = 78,4МГц; Рк мах ≥ 5*39 =195 мВт.

Параметры транзистора КТ312А

Структура транзистора

n-p-n

Граничная частота коэффициента передачи тока в схеме с ОЭ ƒгр, МГц

80

Максимально допустимая постоянная рассеиваемая мощность коллектора P к max, мВт

225

Коэффициент передачи тока биполярного транзистора в режиме малого сигнала в схеме с ОЭ: h21э min

10

h21э max

100

Максимально допустимое постоянное напряжение коллектор – эмиттер Uкэ mах, В

20

Максимально допустимый постоянный ток коллектора I k max, мA

30

Объемное сопротивление базы на высоких частотах rб', Oм

100


 

Из проведенных расчетов выбирается транзистор типа ГТ308Б.

Информация о работе Курсовая работа на тему исследование транзистора