Условия снижающие жизненный цикл зданий

Автор работы: Пользователь скрыл имя, 23 Апреля 2014 в 13:37, реферат

Краткое описание

Условия снижающие жизненный цикл зданий
Оптимизация продолжительности жизненного цикла жилых и зданий инфраструктуры является производной целесообразных границ реконструкции, модернизации и ремонта.
В зависимости от степени соответствия функциональным и техническим требованиям они могут быть разделены на 4 группы.

Содержание

1. Условия снижающие жизненный цикл зданий
2. Примеры закрепления оснований.
2.1 Технологии укрепления оснований
2.2 . Силикатизация грунтов
2.3 Закрепление грунтов цементацией
2.4 Электрохимическое закрепление грунтов
2.5 Струйная технология закрепления грунтов оснований фундаментов
3. Используемая литература

Вложенные файлы: 1 файл

реконструкция1.docx

— 416.65 Кб (Скачать файл)

После окончания работ по инъецированию необходимо провести извлечение инъектора. Оно производится виброметодом, а также путем использования специального реечного домкрата (рис. 6.2,в).

Погружение инъекторов забивкой и вибропогружением применяют при силикатизации песчаных грунтов на глубину до 15 м. Применяют ударные инструменты механического или пневматического типа. Забивка осуществляется по заходкам в последовательности, отраженной в проекте. При погружении инъекторов через железобетонные плиты фундаментов, отмостки, полы в них предварительно выбуриваются отверстия.

Погружение и установка инъекторов в предварительно пробуренные инъекционные скважины применяются при силикатизации просадочных грунтов при обычной и дополнительной цементации. Бурение ведется вертикальными и наклонными скважинами.

Устройство скважин для цементации зоны контакта подошвы фундамента с основанием рекомендуется производить колонковыми станками сплошным забоем, а в условиях стесненного производства работ - пневмоударными мобильными установками. При наличии слабых грунтов требуется установка обсадных труб.

Расстояние между скважинами колеблется в пределах 1,7-3 м. Очередность бурения скважин и инъецирования определяется проектом производства работ. Чаще всего инъецирование производится с интервалом в последовательности 1; 3; 5; 7 и 2; 4; 6; 8 и т.д.

Для нагнетания растворов можно применять насосы с расходом 1-10 м3/мин и давлением до 1,5 МПа. К таким насосам относятся: одноплунжерный ПС-45, двухплунжерный НПГ-1М шестиплунжерный НС-3 и др. Для погружения инъекторов можно применять пневматические и отбойные молотки КЦМ-4, ОМ-506, ОМСП-6, СМ-5 и др. с рабочим давлением 0,4-0,55 МПа и расходом воздуха 1,0-1,6 м3/мин.

Для контроля технологических процессов используется аппаратура: манометры на давление 1-3 МПа, ареометры для измерения плотности растворов, термометры, редукторы УР-2, КРР-50 для регулирования давления углекислого газа.

Инъекторы после окончания цикла нагнетания извлекаются гидравлическими, реечными домкратами или другими приспособлениями грузоподъемностью 5-10 т.

Нагнетание закрепляющих реагентов

Закрепляющие реагенты нагнетают отдельными заходами в технологической последовательности, предусмотренной проектом производства работ. В однородные по водопроницаемости грунты нагнетание производится от устья в глубину или из пяты скважины к устью. В неоднородных по водопроницаемости грунтах в первую очередь закрепляют слои с большей водопроницаемостью.

Величина расхода закрепляющих химических растворов уточняется при контрольном закреплении и контролируется по расходомерной шкале и счетчику расходомера.

Расход раствора Q на одну заходку можно рассчитать по формуле Q=nR2l3a, где п - пористость грунта, %; R - радиус закрепления, м; l3 - длина заходки, м; а - коэффициент, принимаемый в зависимости от способа силикатизации (5 - при двухрастворной; 12 - при однорастворной; 7 - при газовой; 8 - для плывунов; 5 - для просадочных грунтов).

Требуемое количество раствора на одну заходку рассчитывается исходя из радиуса действия, пористости грунта и коэффициента насыщения раствором Q=nR2(1,33R+1)na1000 л, где п - пористость грунта; а - коэффициент насыщения грунта раствором (таблица 6.4).

Таблица 6.4

Значения коэффициента насыщения грунта раствором

Скорость распространения раствора, см/мин

Коэффициент насыщения грунта

Скорость распространения раствора, см/мин

Коэффициент насыщения грунта

0,3

1,0

3

0,5

0,6

0,8

6

0,4

1,0

0,7

10

0,35

1,8

0,6

   

 

На рис. 6.3 приведена технологическая схема инъекционного закрепления грунтов в основаниях фундаментов способом однорастворной силикатизации. Технология выполнения работ предусматривает: разметку мест бурения скважин; пробивку сквозных отверстий под устьем скважин в бетонном основании и отмостки; установку и перемещение бурового станка; непосредственно бурение скважин; приготовление растворов; установку инъекционных труб; нагнетание растворов; заделку скважин; отрывку контрольных шурфов; взятие образцов; обратную закопку с уплотнением шурфов.

Рис. 6.3. Технологическая схема инъекционного закрепления грунтов основания фундаментов способом однорастворной силикатизации

1 - компрессор; 2, 3, 4, 5 - емкости для отвердителя, крепителя, рабочей концентрации; 6 - насосы; 7 - дозатор; 8 - емкость для рабочего раствора; 9 - инъекторы; 10 - расходомер; 11, 12 - инъекционные скважины 1-й и 2-й очередей; 13 - бурильный станок; 14 - зона ограждения; 15 - зона складирования

При двухрастворной силикатизации жидкое стекло и раствор хлористого кальция нагнетаются рядами с чередованием инъекторов через ряд. Перерывы между нагнетанием жидкого стекла и хлористого кальция зависят от скорости грунтовых вод 3-1,5 м/сут. Каждый раствор нагнетается отдельным насосом.

Подобная технология применима для однорастворной силикатизации песчаных грунтов. Химические реагенты доводят до требуемой концентрации и через дозаторы подают в рабочие емкости, где готовится гелеобразная смесь. Затем с помощью насоса закачиваются в инъектор.

При закреплении грунтов способом газовой силикатизации через инъектор нагнетаются углекислый газ и раствор силиката натрия, а затем снова углекислый газ. Давление при нагнетании газа для отвердения силикатного раствора должно находиться в пределах 0,4-0,5 МПа. Перерыв во времени между нагнетанием силиката натрия и газа не должен превышать 30 мин.

2.3 . Закрепление грунтов цементацией

Такой метод закрепления грунтов может быть применен для закрепления скальных, песчаных и гравелистых грунтов при следующих коэффициентах фильтрации: для скальных грунтов - 0,01 м/сут, для песчаных - 50 м/сут. Для цементации применяют смеси цементного раствора с В/Ц = 1-0,8. Для улучшения свойств, а также для связывания химически несвязанной воды в раствор добавляется бетонит в количестве до 10 % массы цемента.

В грунт через инъекторы под давлением 3-6 атм нагнетают раствор. Расстояние между скважинами назначают в зависимости от величины удельного поглощения. Радиус закрепления составляет 0,3-1,5 м.

Цементация грунтов обеспечивает создание монолитности основания и повышает прочность в пределах 1,0-4,0 МПа. При этом повышается водонепроницаемость грунта. Вид и марку цемента принимают в зависимости от наличия и агрессивности вод.

Контроль качества работ

Контроль качества работ осуществляется на всех этапах производства работ, проверяются: качество исходных материалов, рабочих закрепляющих реагентов и составов; опытной проверкой - расчетные параметры закрепления и технических условий производства работ; проверкой - соответствие требованиям проекта физико-механических свойств закрепленных грунтов и однородность их закрепления; проверкой - размеры закрепленных массивов, радиусы действия инъекторов, а также сплошность закрепления; контролем - осадка фундаментов геодезическими средствами наблюдения; количество и расположение контрольных скважин и шурфов, количество и качество отбираемых через бурение проб; контрольное бурение должно осуществляться колонковым способом с диаметром скважин не менее 84 мм; испытания образцов закрепленных грунтов производят в лабораторных условиях; отбор кернов (образцов) осуществляется через каждые 0,8-1,0 м по глубине; инструментальные геодезические наблюдения за осадками фундаментов осуществляются до, во время и по окончании инъекционных работ.

При сдаче и приемке законченных работ предъявляют следующую техническую документацию: документы с результатами проверки качества исходных материалов; журналы бурения скважин, погружения инъекторов и нагнетания в грунты реагентов; планы, профили и сечения закрепленного грунтового массива с указанием положения контрольных выработок; акты вскрытия контрольных шурфов, журналы контрольного бурения и результаты физико-механических испытаний.

В развитие технологии закрепления грунтов цементацией появился метод «Геокомпозит», сущность которого состоит в нагнетании цементной композиции под давлением 5-20 атм как под подошву фундамента, так и в область слабых грунтов более глубокого заложения.

Под действием высокого давления осуществляется гидроразрыв грунтового слоя с расположением трещин радиально от инъекторов вглубь массива. Раскрытие трещин происходит по ослабленным участкам грунта с одновременным заполнением цементным раствором и уплотнением. В результате этого формируется каркасная матрица из цементной составляющей с элементами уплотненного грунта. Композитный массив грунта приобретает повышенное значение модуля деформации, увеличиваются сцепление и угол внутреннего трения.

Одним из технологических приемов повышения физико-механических характеристик грунтов является устройство микросвай в результате использования инъекторов. Вокруг каждого из них образуется грунтоцементная свая с несущей способностью 7-10 т.

Технология «Геокомпозит» успешно используется для восстановления и повышения несущей способности фундаментов из бутовой и кирпичной кладки, когда путем инъекции раствора под большим давлением восстанавливается монолитность фундаментов, достигается заполнение полостей от деревянных свай и лежней, происходит цементация слабых и неустойчивых грунтов основания.

2.4 Электрохимическое закрепление грунтов

Достаточно эффективной технологией закрепления водонасыщенных глинистых, пыле-ватых и илистых грунтов является электрохимический метод. В грунт с наружной и внутренней сторон фундамента погружают трубчатые электроды, один из которых служит анодом, а другой - катодом. Расстояние между электродами одного знака 0,8-1,0 м. Через анодный электрод самотеком поступают растворы солей СаС12, затем Fe2(SО4)3 или A1(SО4)3. Из катода откачивают поступающую грунтовую воду, тем самым создавая дополнительный градиент скоростей. Под действием напряжения постоянного тока 100-120 В происходит направленное движение солевых растворов от анода к катоду. Тем самым обеспечивается насыщение зоны укрепленного грунта поочередно различными солями, взаимодействие которых позволяет получать плотные структуры грунтов с прочностью 0,4-0,6 МПа. При этом средний расход электроэнергии составляет 60-100 кВт·ч/м3 закрепляемого грунта.

На рис. 6.4 приведена технологическая схема производства работ. Основной технологический процесс состоит в устройстве скважин и установке электродов с перфорированной частью нижней зоны.

Рис. 6.4. Технологическая схема производства работ по закреплению грунтов электрохимическим методом 
1 - фундамент; 2, 3 - анод, катод; 4 - емкость для раствора солей; 5 - генератор постоянного тока; 6 - насос для откачки воды от катода; 7 - трубопровод

Оборудованием для проведения работ служат: генератор постоянного тока, система трубопроводов, насос для откачки воды из катода, система коммутации анодов и катодов, бак для раствора солей.

Процесс электрохимического закрепления грунтов осуществляется по захваткам длиной 15-20 м в следующей последовательности производства работ: подготовительные работы на захватке; разметка скважин и бурение; размещение анодов и катодов; установочных емкостей с раствором солей; коммутация, в том числе электрических цепей; откачивание воды из катода; процесс электрохимического закрепления.

По окончании закрепления грунта на одной захватке цикл работ повторяется. При этом особое внимание уделяется процессу контроля качества работ, эффективности набора прочности грунтов, устройству контрольных участков и оценке физико-механических свойств.

При выполнении пробных работ уточняются параметры электромагнитного поля, концентрация солевых растворов и время производства работ. По уточненным техническим параметрам ведутся работы в объеме всего здания.

Сопоставительный анализ методов закрепления грунтов по себестоимости производства работ показал, что минимальная себестоимость работ относится к методам электрохимического закрепления грунтов, а также одноразовой силикатизации. В то же время следует отметить, что постоянный рост цен на электроносители и химикаты, а также повышение эксплуатационной стоимости комплекта машин приводят к значительному удорожанию работ.

Опыт реконструктивных работ показывает, что в ряде случаев экономически целесообразно произвести повышение несущей способности фундаментов, нежели укрепление грунтов основания.

Вторым достаточно объективным фактором является слабая степень контроля укрепления грунтов из-за их неоднородности по толщине и периметру здания. Это требует достаточно плотного зондирования, что приводит к дополнительным затратам.

Таким образом, выбор способа и схем закрепления грунта зависит от характеристик основания, формы и размеров фундамента, требуемой несущей способности основания. Ширина основания закрепляемого грунта может быть определена из соотношенияВ=b(2К+1), где b - ширина фундамента в плане; К - коэффициент, определяющий связь со средним давлением Р на уровне подошвы фундамента реконструируемого здания.

 

2.5. Струйная технология закрепления грунтов оснований фундаментов

Наиболее эффективным методом повышения несущей способности оснований и фундаментов является устройство грунтоцементных свай и массивов по струйной технологии (Jet Grouting), который широко используется в зарубежной практике. Метод разработан в Японии в конце 70-х годов и получил развитие во многих странах. Лидерами в изготовлении технологического оборудования в Европе являются немецкие фирмы Keller, Bauer, итальянская Rodo, французская Колагранде и др. (рис. 6.7).

Информация о работе Условия снижающие жизненный цикл зданий