Технологии усиления грунтов

Автор работы: Пользователь скрыл имя, 24 Апреля 2014 в 21:22, реферат

Краткое описание

В процессе длительной эксплуатации зданий и сооружений происходят деформации конструкций. При строительстве зданий на слабых грунтах основными причинами деформаций являются неравномерные осадки, вызывающие разрушения самих фундаментов, стен, колонн, перекрытий.

Вложенные файлы: 1 файл

СМИРНОВА РЕФЕРАТ.docx

— 23.32 Кб (Скачать файл)

Министерство образования и науки РФ

Волгоградский государственный архитектурно-строительный университет

Кафедра экологического строительства и городского хозяйства

 

 

 

 

 

 

Реферат на тему:

«Технологии усиления грунтов»

 

 

 

 

Выполнил : ст. гр. ГСХ -1-11

Смирнова И.О.

Проверила : преп.

Калашникова Е.В.

 

 

 

 

 

 

 

 

 

Волгоград 2014 г.

В процессе длительной эксплуатации зданий и сооружений происходят деформации конструкций. При строительстве зданий на слабых грунтах основными причинами деформаций являются неравномерные осадки, вызывающие разрушения самих фундаментов, стен, колонн, перекрытий.

Выбор технологии усиления оснований и фундаментов зависит от категории состояния здания, а также категории риска предполагаемых работ по консервации, реставрации либо реконструкции. Реконструкция может быть связана с увеличением нагрузок на существующие фундаменты за счет надстроек, замены деревянных перекрытий железобетонными, изменения технологии и пр. Основополагающими при выборе технологии усиления являются факторы, связанные с конструктивными особенностями здания, состоянием грунта в основании и оснащенностью организаций, осуществляющих работы. Разработанным на сегодня оборудованием можно выполнять работы по усилению оснований и фундаментов технологично, быстро, надежно, с минимальным использованием ручных операций.

Современные методы расчета впервые дают возможность смоделировать на основе геотехнической информации конкурентоспособные варианты технологии усиления оснований и фундаментов. Без должного расчетного обоснования нельзя отказываться от традиционных технологий. В комплексе с новыми, современными, они часто дают положительный эффект.

При сложных случаях реконструкции, как правило, используют несколько технологических приемов. Так, например, частичная традиционная перекладка фундаментов может выполняться в комплексе с инъекционными технологиями.

Во всех случаях предложенная технология должна обеспечить надежную длительную эксплуатацию здания, соответствующую данному при проектировании геотехническому прогнозу. Должны быть учтены вопросы экономики, экологии, безопасности ведения, работ. Экологический аспект в большей степени касается многочисленных химических способов искусственного улучшения свойств грунтов. Последствия вторжения в природную гидрогеологическую среду непредсказуемы. Так, например, усиление фундаментов Малого театра в Москве, выполненное ведущей европейской фирмой «Bauer» с использованием высоконапорных инъекций, решило проблему локальной стабилизации фундаментов здания. Однако объемные массивы укрепленного грунта стали играть роль плотин, нарушающих сложившийся гидрогеологический режим. Последствия таких воздействий трудно прогнозировать. Это может способствовать развитию карста, выносу тонкодисперсных частиц из-под фундаментов соседних зданий и т.д.

Рассмотрим и проанализируем традиционные и новые технологии усиления оснований и фундаментов, предварительно оценив причины, обусловливающие необходимость такого усиления. Согласно обобщенной классификации Б.И. Далматова это, прежде всего:

увеличение нагрузки на фундаменты;

разрушение кладки фундамента или снижение его гидроизолирующих свойств;

ухудшение условий устойчивости фундаментов либо грунтов в их основании;

увеличение деформативности грунтов;

непрерывное развитие недопустимых перемещений конструкций.

Анализируя данные сплошного обследования свыше 10 тысяч жилых зданий, результаты обследований, проведенных другими институтами, лабораториями, можно конкретизировать причины деформаций зданий Петербурга, расположив их по степени значимости:

неравномерное уплотнение слабых, заторфованных либо насыпных грунтов вследствие изменения гидрологического режима территории либо неравномерной загрузки этих грунтов;

нарушение структуры грунтов при откачке вод из подвалов, утечке их в коллекторы с выносом тонкодисперсных частиц (механическая суффозия), а также при динамических воздействиях транспорта, промышленной сейсмики;

повсеместное понижение горизонта подземных вод в центральной части города в связи со строительством инженерных сетей глубокого заложения, метро, что ведет к гниению деревянных лежней и свай;

локальное обводнение основания техногенными водами, изменяющими химический состав и температуру грунтовых вод и приводящими к гниению деревянных лежней, свай и оглеению грунта;

строительство рядом со старыми зданиями новых, соразмерных с существующими;

устройство заглубленных сооружений (гаражей, переходов);

аварии на инженерных сетях, в подвалах здания с выносом грунта в канализационную сеть (глубокие коллекторы);

промерзание и оттаивание грунтов в основании и пр.

Надо отметить, что в последние годы активизировался процесс гниения лежней и свай в Стокгольме, Хельсинки и Петербурге в связи с активным освоением подземного пространства. Строительство новых станций метро в самом центре города без предварительного укрепления фундаментов старых зданий привело к целой серии аварийных ситуаций.

В сложных инженерно-геологических условиях этих городов при большом количестве уникальных памятников необходим соответствующий арсенал технологических способов по усилению оснований и фундаментов.

В литературе рассматриваются, как правило, традиционные способы усиления. Однако последние 20 лет развиваются новые технологии, особенно интенсивно в ФРГ, Англии, Франции, Италии, Швеции, Финляндии. Причем ведущие фирмы специализируются не только на работах по усилению оснований и фундаментов, но и создают новые технологии, продают разработанное оборудование.

 

Традиционные способы усиления фундаментов

Ошибки при возведении фундаментов старых зданий, погрешности в оценке свойств грунтов приводили к необходимости усиления как самих фундаментов, так и грунтов

в их основании. Первые рекомендации по усилению фундаментов и восстановлению гидроизоляции, включая горизонтальную противокапиллярную, содержатся в Урочных положениях Рошефора (1889). Причем технологии усиления были традиционны и просты по решению, как и сами фундаменты. До середины XX в. изменялись лишь отдельные приемы, использовались новые строительные материалы (металл, бетон, железобетон).

Все традиционные технологии усиления основания и фундаментов сводились, в основном, к увеличению площади опирания существующих фундаментов и, соответственно, уменьшению интенсивности давления на грунты основания. Параллельно разрабатывались технологические приемы, связанные с искусственным улучшением свойств грунтов в основании путем введения различных химических реагентов.

Увеличение площади подошвы фундаментов достигалось преимущественно за счет создания железобетонных обойм либо банкетов (одно- и двухсторонних). В старое время для уширения фундаментов применяли прикладки, которые выполняли вперевязку с существующей кладкой. Опирание прикладок осуществлялось на различном уровне. Так, откопка старых фундаментов в Выборге, Новгороде, Пскове показала, что прикладки оставались в насыпном грунте и фактически не оказывали влияния на условия дальнейшей эксплуатации зданий. Они включались в работу лишь при больших деформациях после соответствующего уплотнения грунтов в основании уширенной части.

Рассмотрим традиционные варианты усиления фундаментов, связанные с увеличением площади подошвы, с позиций геотехники и технологичности применительно к слабым водонасыщенным грунтам.

Уширения подошвы фундамента без предварительной опрессовки малоэффективны. Как указывалось выше, они вступают в работу лишь при увеличении нагрузки, когда появляются дополнительные осадки. К сожалению, дополнительные осадки могут оказаться предельными для старого здания, требующего усиления.

Усиление оснований и фундаментов, как правило, производится в том случае, когда грунты перегружены, т.е. под краями фундаментов имеются развитые зоны пластических деформаций. При вскрытии таких фундаментов (даже локальных) до уровня подошвы может произойти выпор грунта в траншею или шурф (рис. 6.3).

Основные приемы усилений оснований и фундаментов сводятся к следующему. Усиливаемый фундамент разбивают на отдельные захватки (участки) длиной 1,5 -2,0 м. На этих участках отрывают вручную траншеи шириной 1,2 - 2,0 м до подошвы. После этого в фундамент забивают металлические штыри (либо погружают в заранее пробитые отверстия через 50 см в шахматном порядке). Устанавливают опалубку и бетонируют уширение. После разработки траншеи бетонируют примыкающие к граням фундамента банкеты без омоноличивания их с кладкой существующих фундаментов. Затем в пробитые проемы устанавливают стальные балки, которые являются упорами для гидравлических домкратов. Эти домкраты обжимают грунты в основании устраиваемых уширений. После опрессовки домкраты извлекают и бетонируют банкет

Инженером Н.И. Стробахиным предложен оригинальный метод опрессовки грунта основания под уширением. Он заключается в установке с двух сторон старого фундамента дополнительных железобетонных сборных блоков уширения. Нижнюю часть этих блоков стягивают анкерами из арматурной стали, верхнюю - раздвигают клиньями либо домкратами. Это дает возможность обжать неуплотненный грунт и включить его в работу под уширением. Оценивая достоинства самой идеи, отметим, что реализация предлагаемого приема связана с определенными сложностями, особенно в слабых грунтах.

Все рассмотренные технологические приемы усиления сложны и дорогостоящи, а главное, выполняются преимущественно вручную. Кроме того, в местах, где горизонт подземных вод достаточно высок, стоимость работ резко возрастает в связи с необходимостью откачки воды из траншей. Откачка должна вестись с таким условием, чтобы исключить нарушение естественного сложения грунтов в основании фундаментов реконструируемого здания. В противном случае работы по усилению только усугубят состояние здания в целом.

Весьма опасна для ветхих фундаментов заделка металлических штырей в тело фундамента. Автор этой главы был свидетелем, когда при усилении фундаментов больничного корпуса на Земледельческой ул. в Петербурге в процессе заделки штырей (1984) был разрушен вскрытый на большом участке фундамент, что привело к разборке 2-этажного капитального здания (вместо планируемой надстройки).

По целому ряду причин полностью неприемлем в условиях слабых грунтов рекомендуемый в литературе способ подведения новых фундаментов с увеличением глубины заложения подошвы. Такие способы нетехнологичны и могут быть реализованы лишь в достаточно прочных грунтах при низком горизонте подземных вод, где, как правило, не требуется усиление фундаментов.

В мировой практике существует богатый арсенал различных химических реагентов, способных закрепить грунт основания на достаточно длительный период. К достоинствам химических способов относятся: высокая степень механизации всех операций; возможность упрочнения грунтов до заданных проектом параметров в их естественном залегании; сравнительно малая трудоемкость, резкое сокращение ручного неквалифицированного труда по откопке траншей, а также сравнительно невысокая стоимость исходных материалов (возможность использования отходов производства). Нами в начале 60-х гг. для улучшения свойств грунтов основания широко использовался кубовый остаток - отход производства кремнийорганических соединений (этилсиликат натрия). Были укреплены грунты в основании фундаментов здания тяговой подстанции трамвая в г. Усолье-Сибирское Иркутской области. Деформации этого относительно легкого здания произошли из-за неравномерных поднятий силами морозного пучения и соответствующих просадок при оттаивании расструктуренного грунта. Фундаменты имели заглубление 1,2 м от планировочной отметки при промерзании грунтов в этом регионе до 2,7 - 3,0 м. С использованием этилсиликата натрия были стабилизированы аварийные осадки двух складских неотапливаемых построек и одного жилого здания на морозоопасных и просадочных грунтах.

Химическое закрепление грунтов позволяет успешно решать многие задачи реконструкции при достаточно сложных инженерно-геологических условиях. Приведем характерный пример из практики в Петербурге. В 1959 - 60 гг. для предотвращения аварийных осадок стен сценической части здания Мариинского театра было выполнено химическое закрепление грунтов в основании ленточных фундаментов. Закреплению подлежал песок пылеватый с коэффициентом фильтрации 0,5 - 1,5 м/сут. и пористостью n = 0,44. Толща песков составляла 3 - 4,5 м ниже подошвы фундамента. Закрепление производили по традиционной схеме с использованием карбамидной смолы плотностью 1,076 - 1,08 г/см3 и 3%-го раствора соляной кислоты.

Вначале нагнетали раствор соляной кислоты (400 л), затем - 50 л воды и после этого - раствор смолы (400 л). Нагнетание осуществлялось плунжерными насосами ПСБ-4 и НР-3 при давлении 0,3 МПа. Объем одной заходки, приходящейся на 1 инъектор, составил 0,6 - 0,7 м3.

В последние годы появились работы о возможности создания нетоксичных либо слаботоксичных составов для закрепления грунта с использованием карбамидных смол. Указывается, что При соблюдении предлагаемых технологически сложных приемов можно снизить канцерогенность этих смол. В связи с усиленным вниманием к охране окружающей среды необходимо более строго подходить ко всем рекомендуемым «универсальным» химическим реагентам. Так, несомненно вредное воздействие на окружающий незакрепленный грунт и подземные грунтовые воды широко рекомендуемых кислот и щелочей высокой концентрации. Специальными исследованиями В.Е. Соколовича во ВНИИОСПе была выявлена токсичность и экологическая несостоятельность целого ряда реагентов, рекламируемых для закрепления грунтов в условиях реконструкции, в частности, акриловых, фенольно-формальдегидных, фурановых, хромлигниновых и карбамидных смол с несвязным формальдегидом.

В рекомендациях по укреплению водонасыщенных слабых грунтов защелачиванием (Уфа, НИИпромстрой) предлагается нагнетать под давлением в слабые пылевато-глинистые грунты концентрированные растворы каустика. Предполагается, что под воздействием высококонцентрированного каустика произойдет частичное поверхностное растворение глинистых минералов с образованием щелочных алюмосиликатных гелей, способных надежно закреплять слабые грунты. Расчет указывает на чрезмерное количество опасного реагента на 1 м3 закрепляемого глинистого грунта (от 100 до 160 кг). Под небольшое общежитие в Нижнем Новгороде необходимо закачать 300 т каустической соды. Учитывая высокий уровень грунтовых вод, помимо всего прочего, можно ожидать подщелачивания вод. Сам автор Ф.Е. Волков отмечает, что «защелачивание глинистых грунтов сопровождается их активным химическим пучением, приводящим к сильным деформациям сооружений, возведенных на таких грунтах».

Информация о работе Технологии усиления грунтов