Расчет шарнирно-консольных балок

Автор работы: Пользователь скрыл имя, 20 Марта 2014 в 22:25, контрольная работа

Краткое описание

Если рассечь эту раму в точке А, то внутренние силовые факторы в этом сечении можно заменить неизвестными внешними параметрами и , (рисунок 2 b). Действуя аналогично рассмотренному выше случаю, легко построить эпюры изгибающих моментов (рисунок 2 c,d,e). Из анализа представленных графиков видно, что эпюры моментов неизвестных продольных сил и симметричны (рисунок 2 c,d), в то время как поперечные силы , обуславливают возникновение изгибающего момента, эпюра которого имеет так называемую кососим метричную форму (рисунок 2 е). Эпюра момента изгиба внешних сил, как видно из рисунка 2 f, также оказывается симметричной.

Вложенные файлы: 1 файл

Строительная механика.doc

— 685.00 Кб (Скачать файл)

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Саратовский Государственный Технический Университет

имени Гагарина Ю.А.

Кафедра  «Теория сооружений и строительные конструкции»

 

Контрольная работа

по дисциплине «Строительная механика»

 

 

1.Расчет шарнирно-консольных балок.

Расчет трехшарнирных арок.

Расчет статически определимых рам.

2.Правило Верещагина.

Определение перемещений в статически неопределимых системах

 

 

 

                                                                                                                                                  

 

 

 

 

 

 

 

Саратов 2013

1.1.Расчет шарнирно консольных  балок.

Построение эпюр поперечных сил Qy и изгибающих моментов Mx в балках

Стержень, работающий на изгиб, называется балкой. В сечениях балок, загруженных вертикальными нагрузками, возникают, как правило, два внутренних силовых фактора - поперечная сила  Qy и изгибающий момент Mx .

Поперечная сила в сечении численно равна алгебраической сумме проекций внешних сил, приложенных по одну сторону от рассматриваемого сечения, на поперечную (вертикальную) ось.

Правило знаков для Qy: условимся считать поперечную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, стремится повернуть данное сечение по часовой стрелке и отрицательной - в противном случае.

Схематически это правило знаков можно представить в виде

эпюра изгибающих моментов

Изгибающий момент Mx в сечении численно равен алгебраической сумме моментов внешних сил, приложенных по одну сторону от рассматриваемого сечения, относительно оси x , проходящей через данное сечение.

Правило знаков для Mx: условимся считать изгибающий момент в сечении положительным, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, приводит к растяжению в данном сечении нижних волокон балки и отрицательной - в противном случае.

Схематически это правило знаков можно представить в виде:

эпюра изгибающих моментов

Следует отметить, что при использовании правила знаков для Mx в указанном виде, эпюра Mx всегда оказывается построенной со стороны сжатых волокон балки.

 

Консольные балки

 При построении эпюр Qy и Mx в консольных, или жестко защемленных, балках нет необходимости (как и в рассмотренных ранее примерах) вычислять опорные реакции, возникающие в жесткой заделке, но выбирать отсеченную часть нужно так, чтобы заделка в нее не попадала.

Пример 3. Построить эпюры Qy и Mx (рис.4).

эпюра изгибающих моментов

рис. 4

Порядок расчета.

1. Намечаем характерные сечения.

2. Определяем поперечную силу Qy в каждом характерном сечении.

По вычисленным значениям строим эпюру Qy.

3. Определяем изгибающий момент Mx в каждом характерном сечении.

изгибающий момент

По вычисленным значениям строим эпюру Mx, причем, на участке под распределенной нагрузкой эпюра будет криволинейной (квадратная парабола). Выпуклость кривой на этом участке всегда обращена навстречу распределенной нагрузке.

Балки на двух опорах

 В отличие от консольных балок, при расчете балок на двух шарнирных опорах необходимо сначала определить опорные реакции из уравнений статики, так как и в левую, и в правую отсеченные части для любого сечения, расположенного между опорами, попадает соответствующая реакция.

Для плоской системы число уравнений статики в общем случае равно трем. Если балка загружена только вертикальными нагрузками, то горизонтальная реакция шарнирно-неподвижной опоры равна нулю, и одно из уравнений равновесия обращается в тождество. Таким образом, для определения реакций в опорах шарнирной балки используются два уравнения статики:

Пример 4. Построить эпюры  Qy, Mx для балки с шарнирным опиранием (рис.5).

Порядок расчета.

1. Вычисляем реакции опор.

реакции опор

Проверка:

2. Намечаем характерные сечения.

В отличие от консольных балок здесь известны обе опорные реакции, поэтому для любого сечения можно рассматривать как левую, так и правую отсеченную часть.

3. Определяем поперечные силы  в характерных сечениях.

поперечные силы

Строим эпюру Qy.

4. Определяем изгибающие моменты в характерных сечениях.

Строим эпюру Mx.

8. Правила контроля эпюр Qу и Mx

 Дифференциальные зависимости между q, Qy, Mx определяют ряд закономерностей, которым подчиняются эпюры Qy и Mx.

Эпюра Qy является прямолинейной на всех участках; эпюра Mx - криволинейная (квадратная парабола) на участке под равномерно распределенной нагрузкой, причем, выпуклость кривой всегда обращена навстречу нагрузке q, и прямолинейная на всех остальных участках.

Под точкой приложения сосредоточенной силы (реакции) на эпюре Qy обязательно должен быть скачок на величину этой силы (реакции). Аналогично, под точкой приложения сосредоточенного момента на эпюре Mx обязателен скачок на величину момента.

Если на участке под распределенной нагрузкой эпюра Qy пересекает ось (Qy=0), то эпюра Mx в этом сечении имеет экстремум.

На участках с поперечной силой одного знака эпюра Mx имеет одинаковую монотонность. Так, при Qy>0 эпюра Mx возрастает слева направо; при  Qy<0 - убывает.

Порядок линии на эпюре Qy всегда на единицу меньше, чем на эпюре Mx. Например, если эпюра Mx - квадратная парабола, то эпюра Qy на этом участке - наклонная прямая; если эпюра Mx - наклонная прямая, то эпюра Qy на этом участке - прямая, параллельная оси; если Mx=const (прямая, параллельная оси), то на этом участке Qy=0.

 

1.2 Расчет трехшарнирных  арок.

Рис. 1.1

Рис.5.1

 

Арка - система криволинейных стержней. К статически определимым системам относятся трехшарнирные арки, имеющие шарнирные опоры на краях и один промежуточный шарнир, чаще всего - центральный (рис.1.1).

Пролет арки - расстояние между ее опорами L. Опору арки принято также называть пятой арки, центральный шарнир - замком арки, а расстояние f от прямой, соединяющей опорные шарниры до замка арки, - стрелой арки или стрелой подъема арки.

Арки относятся к распорным системам, т.е. таким системам, в опорах которых, в отличие от безраспорных систем, при действии только вертикальной нагрузки возникает ненулевое горизонтальное усилие, называемое распором.

Инженер-строитель может столкнуться с необходимостью выбора между безраспорной системой (балкой) и распорной системой (аркой) для выполнения перекрытия некоторого пролета, например, мостового. При этом арку сопоставляют с соответствующей балкой, т.е. простой балкой на двух опорах, перекрывающей такой же пролет и находящейся под действием такой же вертикальной нагрузки, что и арка.

Ключ арки – место, в котором сечение, перпендикулярное к оси арки, является осью симметрии.

Ось арки – средняя линия, проходящая через центры тяжести сечений арки.

Равномерно распределенная нагрузка на единицу длины – нагрузка постоянной интенсивности, измеряемая на единицу длины оси арки.

Равномерно распределенная нагрузка на единицу проекции – нагрузка постоянной интенсивности, измеряемая на единицу проекции оси арки на какую-либо ось координат.

Продольная сила – направленная по касательной к оси арки проекция главного вектора системы сил, заменяющего в данном поперечном сечении действие отброшенной части арки на ее оставшуюся часть. Положительное направление продольной силы совпадает с направлением нормали к сечению арки и соответствует растяжению.

Поперечная сила – направленная вдоль оси, перпендикулярной к оси арки составляющая главного вектора системы сил, заменяющего в данном поперечном сечении действие отброшенной части арки, на ее оставшуюся часть. Положительное направление поперечной силы совпадает с направлением нормали к сечению, повернутой по часовой стрелке на прямой угол.

Изгибающий момент – взятый относительно оси поперечного сечения арки момент системы сил, заменяющий в данном поперечном сечении действие отброшенной части арки на ее оставшуюся часть. Положительный изгибающий момент растягивает нижние волокна в арке.

Частным случаем трехшарнирной арки является трехшарнирная арка с затяжкой (рис.1.2).

Рис. 1.2

Затяжка - горизонтальный стержень, предназначенный для полного или частичного восприятия горизонтального распора. Для того, чтобы система при наличии затяжки осталась статически определимой, одну опору арки делают катковой. В этом случае, при отсутствии горизонтальной составляющей нагрузки горизонтальные реакции в опорах будут равными нулю, а затяжка будет воспринимать распор полностью.

При нагрузке определенного вида очертание арки можно задать таким, чтобы в ней не возникало изгибающих моментов. Такие арки называют арками рационального очертания.

При задании геометрии арки необходимо определить величины пролета L, стрелы f, и функцию y(x), описывающую очертание оси арки (рис.1.1). Для арки с затяжкой, кроме того, необходимо задать высоту над затяжкой f’ (рис.1.2).

Задав значения L и f, мы определяем положение трех точек - опор и замка арки. Если дополнительно потребовать, чтобы ось арки была очерчена по окружности или по параболе, то положение этих трех точек однозначно определит функцию y(x), поскольку через три точки можно провести только одну окружность и только одну параболу.

При круговом очертании арки:

 , где  ,и       (1.1)

При параболическом очертании арки:

,                                        (1.2)

Угол  в (1.1) и (1.2) - угол наклона касательной к оси арки в данной точке (рис.1.1). На левой половине арки , на правой - . Справедливость формул (1.1) и (1.2) читателю предлагается проверить самостоятельно.

При гиперболическом очертании арки:

 

отношение полуосей.

При очертании арки в виде эллипса:

 отношение полуосей.

Статический расчет трехшарнирной арки

В принципиальном отношении расчет трехшарнирной арки не отличается от расчета других статически определимых систем: вначале определяются опорные реакции, затем строятся эпюры изгибающего момента, продольного и перерезывающего усилия, после чего выполняются проверки и, при необходимости, определяются перемещения. Единственная особенность, с которой приходится сталкиваться, - появление чисто вычислительных трудностей, связанных с криволинейностью очертания оси арки.

Как в любой статически определимой системе, реакции в опорах трехшарнирной арки находятся исключительно из статических уравнений (уравнений равновесия). Примем положительные направления реакций в опорах арки в соответствии с рис.1.3.

Из условия равенства нулю суммы проекций всех действующих на систему сил на вертикальную ось имеем:

                  (1.3)

где  - сумма проекций всех действующих на арку внешних сил на вертикальную ось. В (1.3) внешняя сила считается положительной, если она направлена вниз.

Далее, составим уравнение моментов всех действующих на систему сил относительно произвольной точки. Здесь в качестве точки, относительно которой будут вычисляться моменты, выберем точку А. Поскольку линии действия трех опорных реакций из четырех проходят через эту точку, в уравнении останется только одна неизвестная реакция - VB:

,                                                                                    (1.4) 

 

где  - суммарный момент действующих на систему внешних сил относительно точки А. В (5.4) он считается положительным, если направлен по часовой стрелке. 

 

Рис.1.3 

 

Уравнений (1.3) и (1.4) достаточно, чтобы найти вертикальные реакции в опорах арки. Составив аналогичные уравнения для балки, соответствующей арке (рис.1.3), легко убедиться, что при отсутствии горизонтальной составляющей нагрузки эти уравнения совпадут с (1.3) и (1.4), а значит вертикальные реакции VA и VB в опорах арки и соответствующей ей балки будут одинаковыми.

Из условия равенства суммы проекций всех действующих на систему сил на горизонтальную ось имеем:

,                                                                                   (1.5)

где  - сумма проекций действующих на арку внешних сил на горизонтальную ось. В (1.5) внешняя сила считается положительной, если она направлена вправо.

Четвертое уравнение - условие равенства нулю суммы моментов всех сил, действующих на систему с одной (любой - левой или правой) стороны от промежуточного шарнира относительно этого шарнира. Рассмотрим, например, равновесие левой половины арки:            

,                                                                (1.6)

где   - суммарный момент действующих на левую часть арки внешних сил относительно точки С. В (1.6) в качестве его положительного направления принято направление против часовой стрелки.

При отсутствии горизонтальной составляющей внешней нагрузки горизонтальные реакции в опорах арки будут равны и направлены противоположно друг другу, что следует из уравнения (1.5):

,                                                                                                                     (1.7)

Горизонтальное усилие H, возникающее в опорах, называется распором.

Из уравнений (1.3)-(1.6) можно найти четыре неизвестные опорные реакции HA, HB, VA и VB, после чего приступить к определению изгибающих моментов в сечениях арки.

Информация о работе Расчет шарнирно-консольных балок