Разработка материального баланса и основных проектных технологических решений цеха обжига цементного завода

Автор работы: Пользователь скрыл имя, 06 Марта 2014 в 20:01, курсовая работа

Краткое описание

Асбестоцементная промышленность – отрасль промышленности строительных материалов, производящая изделия, которые используются в строительстве зданий и трубопроводах различного назначения.
Первый промышленный выпуск асбестоцементных изделий относится к 1900г. изобретателем метода производства этих изделий является Людвиг Гатчек. Для формования асбестоцементных листов из смеси асбестоцемента и воды он использовал формовочные машины, применявшиеся в то время для формования из древесного волокна бумаги или картона и носившие название «папп-машины» («бумажные машины». Название «папп-машина» долгое время применялось и в асбестоцементной промышленности.

Вложенные файлы: 1 файл

Курсовой проект.doc

— 999.00 Кб (Скачать файл)

В зоне спекания при температуре 1300 – 14500 С происходит частичное плавление материала, начинающееся в поверхностных слоях зерен, а затем постепенно распространяющееся к их центру. Время полного усвоения оксида кальция и образования алита в зоне спекания составляет 20 – 30 минут.

В зоне охлаждения температура клинкера понижается с 1300 до 1100 – 10000С. Часть жидкой фазы при этом кристаллизуется с выделением кристаллов клинкерных минералов, а часть затвердевает в виде стекла. Границы зон во вращающейся печи достаточны условны и нестабильны. Меняя режим работы печи, можно смещать границы и протяженность зон и тем самым регулировать процесс обжига.

Аппараты для тепловой обработки. Они работают по принципу как противотока, так и прямотока. С точки зрения расходы теплоты прямоток выгоднее, чем противоток, так как в последнем случае выше температура отходящего материала и больше потери теплоты. Тем не менее, чаще применяют противоток, что связано с большей разностью температуры теплоносителя и материала в таких аппаратах и соответственно большей скоростью теплообмена, что позволяет сократить длительность обжига. Тепловыми агрегатами в производстве клинкера являются вращающиеся печи. Они представляют собой стальной барабан, который состоит из обечаек (открытый цилиндрический или конический элемент конструкции), соединенных сваркой или клепками, и имеет внутреннюю футеровку из огнеупорного материала (рис. 6). Профиль печей может быть как строго цилиндрическим, так и сложным с расширенными зонами. Расширение определенной зоны производят для увеличения продолжительности пребывания в ней обжигаемого материала. Печь, установленная под углом 3 - 40 к горизонту, вращается с частотой 0,5 – 1,5 мин-1. Вращающиеся печи в основном работают по принципу противотока. Сырье поступает в печь с верхнего (холодного) конца, а со стороны нижнего (горячего) конца вдувается топливно-воздушная смесь, сгорающая на протяжении 20 - 30 м длины печи. Горячие газы, перемещаясь со скоростью 2 - 13 м/с навстречу материалу, нагревают последний до требуемой температуры. Длительность пребывания материала в печи зависит от ее частоты вращения и угла наклона, составляя, например, в печи размером 5× 185 м, 2 - 4 часа. Занятое материалом сечение во вращающихся печах составляет лишь 7 - 15 % объема, что является следствием высокого термического сопротивления движущегося слоя и объясняется как малой теплопроводностью частиц обжигаемого материала, так и слабым перемешиванием их в слое.

 

Рис. 6. Вращающаяся печь размером 5×185 м:

 

1 – дымосос; 2 – питатель для подачи шлама; 3 – барабан; 4 – привод; 5 – вентилятор с форсункой для вдувания топлива; 6 – колосниковый охладитель.

сухой портландцемент сырье добавка

Факел пламени и горячие газы нагревают как поверхностный слой материала, так и футеровку печи. Футеровка, в свою очередь, отдает получаемую теплоту материалу лучеиспусканием, а также путем непосредственного контакта. При каждом обороте печи в процессе соприкосновения с газовым потоком температура поверхности футеровки повышается, а при контакте с материалом понижается. Таким образом, материал воспринимает теплоту лишь в двух случаях: либо когда соприкасается с нагретой поверхностью футеровки, либо когда находится на поверхности слоя. Производительность вращающейся печи зависит от объема внутренней части, утла наклона печи к горизонту и частоты вращения, температуры и скорости движения газов, качества сырья и ряда других факторов.

Важное преимущество вращающихся печей — их технологическая универсальность, обусловленная возможностью использовать сырьевые материалы различных видов.

Теплообменные устройства

Эффективное использование теплоты во вращающихся печах возможно только при установке системы внутрипечных и запечных теплообменных устройств. Внутрипечные теплообменные устройства имеют развитую поверхность, которая либо всё время покрыта материалом, непосредственно соприкасающимся с газами, либо работает как регенератор, воспринимаю теплоту от газов и передавая ее материалу. Эти устройства увеличивают поверхность теплообмена между газами и материалами также потому, что, уменьшая скорость движения материала, повышают коэффициент заполнения печи. В результате установки внутрипечных теплообменных устройств кроме основной задачи – снижения расходов теплоты – можно решить и ряд других задач: интенсифицировать процесс перемешивания, снизить пылевынос. Это позволяет улучшить работу печи и повысить её производительность.

В России для обжига сухих сырьевых смесей в основном используют печи с циклонными теплообменниками. В основу их конструкции положен принцип теплообмена между отходящими газами и сырьевой мукой во взвешенном состоянии (рис. 7).

 

Рис. 7. Схема циклонных теплообменников к вращающейся печи:

 

1 – дымовая труба; 2 – циклонные  теплообменники; 3 – винтовой питатель; 4 – скребковый конвейер; 5 – расходный  бункер сырьевой муки; 6 – ковшовый элеватор; 7 – течка; 8 – переходная головка; 9 – вращающаяся печь; 10 – пылеуловители; 11 – дымосос.

Уменьшение размера частиц обжигаемого материала, значительное увеличение его поверхности и максимальное использование этой поверхности для контакта с теплоносителем интенсифицируют теплообмен. Сырьевая мука в системе циклонных теплообменников движется навстречу отходящих из вращающейся печи газов температурой 900 – 11000С. Средняя скорость движения газов в газоходах составляет 15 – 20 м/с, что значительно выше скорости движения частиц сырьевой муки. Поэтому поступающая в газоход между верхними I и II ступенями циклонов сырьевая мука увлекается потоком газов в циклонный теплообменник I ступени. Поскольку диаметр циклона намного больше диаметра газохода, скорость газового потока резко снижается, и частицы выпадают из него. Осевший в циклоне материал через затвор – мигалку поступает в газоход, соединяющий II и III ступени, а из него выносится газами в циклон II ступени. В дальнейшем материал движется в газоходах и циклонах III и IV ступеней. Таким образом, сырьевая мука опускается вниз, проходя последовательно циклоны и газоходы всех ступеней, начиная относительно холодной (I) и кончая горячей (IV). При этом процесс теплообмена на 80 % осуществляется в газоходах и только 20 % приходится на долю циклонов.

Время пребывания сырьевой муки в циклонных теплообменниках не превышает 25...30 с. Несмотря на это, сырьевая мука не только успевает нагреться до температуры 700...800°С, но полностью дегидратируется и на 25...35 % декарбонизируется.

Недостатки печей этого типа — высокий расход электроэнергии и относительно низкая стойкость футеровки. Кроме того, они чувствительны к изменению режима работы печи и колебаниям состава сырья. После прохождения циклонных теплообменников сырьевая мука температурой 720 - 750°С поступает в декарбонизатор - аппарат для удаления из воды свободной угольной кислоты путём продувания этой воды воздухом (рис. 8). Частицы сырьевой муки и растленное топливо диспергируются и перемешиваются. Теплота, выделяющаяся при сгорании топлива, передается частицам сырьевой муки, которые нагреваются до 920 - 970°С. Материал в системе циклонный теплообменник — декарбонизатор находится лишь 70 - 75 с и за это время декарбонизируется на 85 - 95%. Установка декарбонизатора позволяет повысить съем клинкера с 1 м3 внутреннего объема печи в 2,5 - 3 раза. Кроме того, в декарбонизаторе можно сжигать низкокачественное топливо и бытовые отходы. Размеры установки невелики, и она может использоваться не только при строительстве новых заводов, но и при модернизации действующих печей. Эксплуатируемые в России печи с циклонными теплообменниками и декарбонизаторами размером 4,5 х 80 м имеют производительность 3000 т/сутки при удельном расходе теплоты 3,46 МДж/кг клинкера.

 

Рис. 8. Вращающаяся печь с циклонным теплообменником и декарбонизатором:

 

1 – дымосос; 2 – электрофильтр; 3 – циклонный теплообменник; 4 –  декарбонизатор;5 – вращающаяся  печь 4,5 × 80 м; 6 – установка контроля  температуры корпуса; 7 – колосниковый холодильник; 8 – установка для олаждения и увлажнения отходящих печных газов.

 

Футеровка печи

Для защиты корпуса от воздействия высокой температуры печи изнутри футеруют огнеупорными материалами, выполняющими одновременно роль изоляции, предотвращающей чрезмерные потери теплоты в окружающую среду. Футеровка должна иметь определенные свойства: химическую устойчивость к обжигаемому материалу, огнеупорность, термостойкость, теплопроводность, механическую прочность, сопротивление истиранию, упругость. Так как футеровки различных зон печи работают а неодинаковых температурных условиях, то их выкладывают из различных огнеупоров. В особо тяжелых условиях находится футеровка зоны спекания – наиболее высокотемпературной зоны вращающейся печи. Наиболее совершенный вид огнеупора для такой зоны является периклазохромитовые кирпичи с пониженным содержанием хромита. Средняя стойкость в цементной промышленности данной футеровки составляет около 230 суток.

Срок службы футеровки увеличивают рядом технологических приемов: строгое соблюдение режима обжига клинкера; равномерное питание сыреем и топливом; постоянство химического состава, тонкости помола и влажности сырья; постоянство состава, влажности и тонкости помола твердого топлива. Эти факторы обеспечивают стабильность режима работы печи, уменьшают колебания температуры в футеровке и деформации корпуса.

Главное условие надежной эксплуатации футеровки – создание и сохранение защитного слоя обмазки на её рабочей поверхности. Клинкерный расплав взаимодействует с материалом футеровки, налипает на неё, образуя слой обмазки толщиной до 200 мм. Процесс образования обмазки и её свойства зависят от температуры плавления, количества и состава жидкой фазы и режима работы печи. Обмазка предохраняет футеровку от разрушения, снижая температуру поверхности кирпича и уменьшая возникающие в нем напряжения, защищает кирпич от колебаний температуры внутри печи, а также от химического и механического воздействия обжигаемого материала.

Интенсификация процессов обжига

Печные агрегаты – самое энергоемкое оборудование. В производстве цемента на их долю приходится около 80 % затрат тепловой и электрической энергии. Добиваясь снижения этих затрат, конструкции печей непрерывно совершенствуют, изыскиваю пути интенсификации процессов обжига. Проблема интенсификации работы вращающихся печей включает в основном две задачи: изыскание наиболее рациональных приемов снижения удельного расхода теплоты на обжиг клинкера и повышение тепловой мощности печи. На производительность печи влияет целый ряд факторов. Во- первых, факторы, которые приводят к изменению удельного расхода теплоты на обжиг клинкера: состав и структура сырья , его влажность и реакционная способность и др. Во-вторых, производительность печи повышается, если увеличивается поверхность соприкосновения газов с материалом, возрастает скорость движения газового потока, сжигание топлива производится с минимальным избытком воздуха. Все мероприятия, способствующие увеличению полезно используемой теплоты сгорания топлива, ускоряет процесс клинкерообразования. К ним относятся установка внутрипечных и запечных теплообменных устройств, снижение влажности шлама за счет обезвоживания в концентраторах или путем введения разжижителей шлама и др.

Тепловая мощность печи – важнейшая конструктивная характеристика, определяющая её производительность. Увеличение количества сжигаемого топлива в том же объеме топочного пространства – один из путей повышения производительности печи. Эффективным средством интенсификации процесса и производительности печи является повышение температуры нагреваемого материала.

Эффективное средство интенсификации процесса обжига – сжигание части топлива в зоне декарбонизации непосредственно в слое материала. Снизить удельный расход теплоты на обжиг клинкера можно введением в сырьевую смесь минерализаторов. Они позволяют ускорить твердофазовые реакции, снизить температуру появления жидкой фазы и улучшить ее свойства, повысить качество продукции. Важный резерв интенсификации процесса обжига – утилизация пыли, улавлиемой из отходящих газов. Тонкодисперсная, частично прокаленная пыль близка по составу сырьевой смеси. Возврат пыли в печь способствует росту производительности агрегата, сокращению расхода сырья, топлива, электроэнергии. Расход топлива можно снизить путем совершенствования технологической схемы, конструктивных решений декарбонизаторов, холодильников и вспомогательного оборудования.

Охлаждение обожженных материалов

Выходящий из вращающейся печи материал имеет температуру около 10000С. Возвращение в печь теплоты материала может существенно снизить расход топлива. Это достигается охлаждением материала воздухом, подаваемым затем в печь для горения топлива. Режим охлаждения влияет как на дальнейший технологический процесс, так и на свойства готового продукта. Размол горячих материалов приводит к снижению производительности мельниц и росту удельного расхода энергии. Особенно чувствителен к охлаждению портландцементный клинкер. Быстроохлажденные клинкера легче размалываются и в определенной мере повышают качество цемента. Поэтому необходимо, чтобы процесс охлаждения клинкера был наиболее полным и протекал быстро, особенно в начальной стадии. Чем полнее охлаждение клинкера, тем меньше потери теплоты.

Широко распространены три типа охладителей: барабанные, рекуператорные и колосниковые. При производстве портландцементного клинкера в современных вращающихся печах используют колосниковые переталкивающие охладители(Рис. 9). Горизонтальная решетка с подвижными колосниками приводится в действие от кривошипного механизма. Форма колосников такова, что при движении вперед клинкер ссыпается на следующий ряд колосников; при движении в обратном направлении он скользит по колосникам. Ввиду того что одни колосники движутся, а другие нет, осуществляется постоянное перемешивание клинкера. Камера охладителя разделена на две части. Клинкер с обреза вращающейся печи в горловине охладителя подвергают воздействию «острого дутья» (10...12 кПа), которое обеспечивает равномерное распределение клинкера по ширине колосников и быстрое начальное его охлаждение. Этот горячий воздух температурой 450 0 С засасывается в печь, где используется для горения топлива в качестве вторичного воздуха. Во вторую часть подрешеточного пространства охладителя также поступает холодный воздух, который подвергается за счет частичного уже охлажденного клинкера и может быть использован для сушки сырья. На разгрузочном конце охладителя устанавливают молотковую дробилку, предназначенную для дробления крупных кусков клинкера («свара»).

Информация о работе Разработка материального баланса и основных проектных технологических решений цеха обжига цементного завода